Open Science Repository Mathematics

doi: 10.7392/openaccess.70081967


Mersenne Primes Cardinality


Alberto Durán Meza

University J. M. Vargas, Caracas, Venezuela


Abstract

This article is concerned with basic number theory. Our purpose is to show that there are infinitely many Mersenne prime numbers; for this, we shall use, some known theorems or results in arithmetic and Cantorian set theory.

Keywords: prime, Mersenne’s primes, Euclid’s theorem, Cantor’s theorem, Schröder-Bernstein’s theorem, Pomerance’s theorem.



Citation: Meza, A. D. (2013). Mersenne Primes Cardinality. Open Science Repository Mathematics, Online(open-access), e70081967. doi:10.7392/openaccess.70081967

Received: May 21, 2013

Published: May 29, 2013

Copyright: © 2013 Meza, A. D. Creative Commons Attribution 3.0 Unported License.

Contact: research@open-science-repository.com



Full text

Other download options: cloud 2; cloud 3.

You don't have a PDF plugin, but you can download the PDF file.


Cite this paper

APA

Meza, A. D. (2013). Mersenne Primes Cardinality. Open Science Repository Mathematics, Online(open-access), e70081967. doi:10.7392/openaccess.70081967

MLA

Meza, A. D. (2013). Mersenne Primes Cardinality. Open Science Repository Mathematics, Online(open-access), e70081967. doi:10.7392/openaccess.70081967

Chicago

Meza, Alberto Durán. 2013. “Mersenne Primes Cardinality.” Open Science Repository Mathematics Online (open-access) (May 29): e70081967. doi:10.7392/openaccess.70081967. http://www.open-science-repository.com/mathematics-70081967.html.

Harvard

Meza, A.D., 2013. Mersenne Primes Cardinality. Open Science Repository Mathematics, Online(open-access), p.e70081967. Available at: http://www.open-science-repository.com/mathematics-70081967.html.

Science

1. A. D. Meza, Mersenne Primes Cardinality, Open Science Repository Mathematics Online, e70081967 (2013).

Nature

1. Meza, A. D. Mersenne Primes Cardinality. Open Science Repository Mathematics Online, e70081967 (2013).


doi

Research registered in the DOI resolution system as: 10.7392/openaccess.70081967.


Submit an open review for this paper

Instructions

Main criteria reviewers should evaluate are: originality, sound methodology and data, following of universal ethical principles, scientific relevance and clear description of problems, hypotheses and results.

Names, affiliations of reviewers and personal contacts should be included at the end of the text.

Maximum text length is 10000 characters. Only serious, consistent and original reviews are accepted.



Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.