Open Science Repository Mathematics

doi: 10.7392/openaccess.45011817


Fermat Primes Cardinality


Alberto Durán Meza

University J. M. Vargas, Caracas, Venezuela


Abstract

We attempt to show that there are infinitely many Fermat Primes, by using Schröder-Bernstein’s Theorem, another known results in Arithmetic and Number Theory.

Keywords: Fermat Primes (quadratics forms), Fermat Primes (classic forms), Pomerance`s Theorem, Cantorian Set Theory.



Citation: Meza, A. D. (2014). Fermat Primes Cardinality. Open Science Repository Mathematics, Online(open-access), e45011817. doi:10.7392/openaccess.45011817

Received: May 21, 2014

Published: June 28, 2014

Copyright: © 2014 Meza, A. D. Creative Commons Attribution 3.0 Unported License.

Contact: research@open-science-repository.com



Full text

Other options: cloud 2; cloud 3.

You don't have a PDF plugin, but you can download the PDF file.


Cite this paper

APA

Meza, A. D. (2014). Fermat Primes Cardinality. Open Science Repository Mathematics, Online(open-access), e45011817. doi:10.7392/openaccess.45011817

MLA

Meza, Alberto Durán. “Fermat Primes Cardinality.” Open Science Repository Mathematics Online.open-access (2014): e45011817.

Chicago

Meza, Alberto Durán. “Fermat Primes Cardinality.” Open Science Repository Mathematics Online, no. open-access (June 28, 2014): e45011817. doi:10.7392/openaccess.45011817.

Harvard

Meza, A.D., 2014. Fermat Primes Cardinality. Open Science Repository Mathematics, Online(open-access), p.e45011817.

Science

1. A. D. Meza, Fermat Primes Cardinality, Open Sci. Repos. Math. Online, e45011817 (2014).

Nature

1. Meza, A. D. Fermat Primes Cardinality. Open Sci. Repos. Math. Online, e45011817 (2014).


doi

Research registered in the DOI resolution system as: 10.7392/openaccess.45011817.


Submit an open review for this paper

Instructions

Main criteria reviewers should evaluate are: originality, sound methodology and data, following of universal ethical principles, scientific relevance and clear description of problems, hypotheses and results.

Names, affiliations of reviewers and personal contacts should be included at the end of the text.

Maximum text length is 10000 characters. Only serious, consistent and original reviews are accepted.



Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.