Open Science Repository Mathematics

doi: 10.7392/openaccess.23050437


Ramanujan's Factorial Conjecture


Alberto Durán Meza

University J. M. Vargas, Caracas, Venezuela


Abstract

We attempt to show that Ramanujan's Conjecture has negative solution. For this we shall use the known method of sketch proof, another basic results of Arithmetic, Algebra and elementary Number Theory. 

Keywords: Brocard's problem, factorial primes, Diophantine equations.



Citation: Meza, A. D. (2013). Ramanujan's Factorial Conjecture. Open Science Repository Mathematics, Online(open-access), e23050437. doi:10.7392/openaccess.23050437

Received: September 6, 2013

Published: October 11, 2013

Copyright: © 2013 Meza, A. D. Creative Commons Attribution 3.0 Unported License.

Contact: research@open-science-repository.com



Full text

Other download options: cloud 2; cloud 3.

You don't have a PDF plugin, but you can download the PDF file.


Cite this paper

APA

Meza, A. D. (2013). Ramanujan's Factorial Conjecture. Open Science Repository Mathematics, Online(open-access), e23050437. doi:10.7392/openaccess.23050437

MLA

Meza, Alberto Durán. “Ramanujan's Factorial Conjecture.” Open Science Repository Mathematics Online.open-access (2013): e23050437.

Chicago

Meza, Alberto Durán. “Ramanujan's Factorial Conjecture.” Open Science Repository Mathematics Online, no. open-access (October 11, 2013): e23050437. doi:10.7392/openaccess.23050437.

Harvard

Meza, A.D., 2013. Ramanujan's Factorial Conjecture. Open Science Repository Mathematics, Online(open-access), p.e23050437.

Science

1. A. D. Meza, Ramanujan's Factorial Conjecture, Open Sci. Repos. Math. Online, e23050437 (2013).

Nature

1. Meza, A. D. Ramanujan's Factorial Conjecture. Open Sci. Repos. Math. Online, e23050437 (2013).


doi

Research registered in the DOI resolution system as: 10.7392/openaccess.23050437.


Submit an open review for this paper

Instructions

Main criteria reviewers should evaluate are: originality, sound methodology and data, following of universal ethical principles, scientific relevance and clear description of problems, hypotheses and results.

Names, affiliations of reviewers and personal contacts should be included at the end of the text.

Maximum text length is 10000 characters. Only serious, consistent and original reviews are accepted.



Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.