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Abstract 

We establish Universal Mathematical Field Equations (UMFE). Applying UMFE, we 

re-derive Maxwell equations, which justifies UMFE and shows that the experiments-based 

Maxwell equations have their mathematical origin; and establish Classical-Spin-Electromagnetics 

(C-Spin-EM) including Spin-Lorentz-type force and Lagrangian-Lorentz-type force. C-Spin-EM 

is self-consistence, powerful and fruitful, at classical level, in the perspective of fundamental 

physics: (1) universally explains and correlates family of Hall effects, zero longitudinal Hall 

coefficient/resistivity, Extended Rashbe SOC, and GMR/TMR. (2) predicts that Spin-potential 

coupling directly induce force, which contributes to Aharonov–Bohm effect; (3) provides 

classical counterparts of Larmor-precession, Stark Effect, Landau–Lifshitz equation, Zeeman 

effect, and Aharonov–Casher effect; (4) propose that electric field induces spin precession. 

UMFE shows that mathematical identities lead to physical dualities including duality between 

Electromagnetics and C-Spin-EM. We postulate a duality between Lagrangian-Lorentz force and 

Hamiltonian. 
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1. Introduction 

In the macroscopic world, Electromagnetics (EM) was established based on the experiments. 

In the microscopic world, phenomena, such as the family of Hall effects, topological insulators, 

Rashba SOC, and GMR/TMR draw many activities. Let’s briefly review those topics. 

EM: There is a heuristic phenomenon: a stationary electric particle Q! (abbreviated e-particle) 

induces only a static vector electric field. However, an observer moving relative to the same 

e-particle observes not only an electric field but also a magnetic field. The fundamental 

differences between static electric field and magnetic field are the following: 

(1) The sources, “e-particle Q!” vs. “e-current J! = Q!𝐯”;  

(2) The way the fields induced by source, “∇ ∙ 𝐄” vs. “∇×𝐁”;  

(3) The nature of the fields, “vector field E” vs. “axial vector field B”;  

(4) Effects of the fields on a test e-particles, “q!𝐄” vs. “q!𝐯×𝐁”. 

A physics student may ask questions: Why the motion of e-particles induces magnetic fields? 

Does the generation of magnetic fields relate with the Coulomb’s law? A teacher’s answer is that 

magnetism is the combination of electric field with Special Relativity and does not relate with the 

Coulomb’s law. We argue that the teacher’s answer is not sufficient to explain the above four 

fundamental differences. 

Historically, Ampere law and Faraday law were established based on series experiments. 

Now we ask further questions: Is the experimental result of the generation of magnetic fields 

inevitable? The answer is yes. Thus we argue that: (1) the magnetic fields must be induced by the 

combination of the Coulomb’s law and the velocity of e-particles; and, further, (2) Maxwell 

equations, except the Coulomb’s law, must be derivable mathematically. 

Q-Spin-EM: There are several fundamental quantum phenomena, such as Rashba SOC, Spin 

Hall effect, Anomalous Hall effect, and GMR/TMR, relating with spin; and zero longitudinal Hall 

coefficient/resistivity. We have questions: do those phenomena have classical counterparts and/or 

origins; if the answer is yes, is there a universal explanation and/or mechanism for those classical 

counterparts; what are further predictions of it for testing? 

Spin-electromagnetism has been developed in quantum regime (abbreviated Q-Spin-EM) [1]. 

The classical correspondence of spin of e-particles is its angular momentum around its axis, 

denoted as 𝐒𝐜. We postulate that, at classical level, the spin of e-particles induces new fields, and 

field equations can be derived mathematically. Furthermore, we expect that the same 

mathematical approach derive both EM and Classical-Spin-EM (abbreviated C-Spin-EM) due to 

electric charge and spin respectively.  

Motivation: To address above questions motivate me to establish a set of Universal 

Mathematical Field Equations (abbreviated UMFE), such that UMFE is equally applicable to 

derive EM and C-Spin-EM, thus, there is duality between both, so that many concepts and effects 

of the well-established EM can be transferred directly to C-Spin-EM. Most important, 

C-Spin-EM and EM are linked together clearly and closely. 

 EM is foundation of Electronics; my goal is that C-Spin-EM may serve as a classical basis of 

Spintronics. 

The significances of UMFE are the following.  
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Firstly, for justifying UMFE, combining UMFE and the Coulomb’s law re-derives EM 

mathematically regardless spin, and answer the above-mentioned questions related with EM. 

Secondly, combining UMFE and the Coulomb’s law derives mathematically C-Spin-EM 

related with spin of e-particles. C-Spin-EM is powerful and fruitful: 

(1) is explicitly connected with EM; 

(2) predicts spin-waves; 

(3) predicts Spin-Lorentz-type force and Lagrangian-Lorentz-type force; the latter contains 

spin-potential coupling, which acts as a force; 

(4) predicts a Landau–Lifshitz-type equation as a supplement of Spin-Lorentz-type force; 

(5) Spin-Lorentz-type and Lagrangian-Lorentz-type force cause Dual-Hall Effect, Topological 

Insulator, Extended-Hall Effect, Temperature Dependence of Extended-Hall Effect, 

Lagrangian-Hall effect; and shows, at classical level, longitudinal Hall coefficient/resistivity 

is zero, which is closely related with GMR/TMR; 

(6) proposes Extended-Rashba SOC; 

(7) suggests several new effects, such as Spin-Aharonov–Bohm Effect, spin-Aharonov–Casher 

effect, Spin-Larmor Precession and Spin-Stark Effect. 

Thirdly, UMFE provides the mathematic origin of dualities between different physic fields 

derived from it, such as duality between electricity and magnetism, and duality between EM and 

C-Spin-EM. Duality is a powerful tool to find intrinsic similarities between apparently different 

phenomena, and predict new effects. “It turns out that most of the important concepts and theories 

of physics can be unified and understood by their common attribute of duality” (Damian P 

Hampshire). 

In Part 1, we derive UMFE related to uniform motion and to spin respectively. In part 2, we 

apply UMFE to physical fields of e-particles to derive EM. Then we mathematically establish 

systematically a theoretical framework, C-Spin-EM, for studying spin related classic phenomena. 

 

Part 1: Universal Mathematical Field Equations and Duality 

2. UMFE and Duality 

 To make descriptions clear in this paper, let’s clarify two terms: 

(1) Fundamental laws: Physic laws describing fields induced by stationary sources, such as the 

inverse-square law, are fundamental laws, and cannot be derived mathematically from any 

other physics law.  

(2) Secondary laws: Physic laws describing axial vector fields induced by moving sources are 

secondary laws and should be derivable mathematically from fundamental laws. 

 

2.1. General UMFE 

We need to find a vector analysis identity that connecting divergences of either a vector or 

an axial vector, and curl of an induced axial vector. For this aim, the following mathematical 

identity is the most noteworthy, 

 ∇× 𝐒×𝐓 = 𝐒 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐒 + 𝐓 ∙ ∇ 𝐒 − 𝐒 ∙ ∇ 𝐓,       (2.1) 
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which indicates that the combination of gradient and divergence of two arbitrary vectors induces 

inevitably an axial vector. One of two terms, ∇ ∙ 𝐓  and ∇ ∙ 𝐒 , represents fundamental 

inverse-square laws. It is useful to write Eq. (2.1) in a different but equivalent form. By using 

another mathematical identity,  

𝐓 ∙ 𝛁 𝐒 = 𝛁 𝐒 ∙ 𝐓 − 𝐒 ∙ 𝛁 𝐓 − 𝐒× 𝛁×𝐓 − 𝐓×(𝛁×𝐒),  

Eq. (2.1) can be rewritten as an identity, 

  ∇× 𝐒×𝐓 = 𝐒 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐒 − ∇ 𝐒 ∙ 𝐓 + 2 𝐓 ∙ ∇ 𝐒 + 𝐒× ∇×𝐓 + 𝐓×(∇×𝐒).   (2.2) 

Eq. (2.1) and Eq. (2.2) are mathematical equivalent. When apply UMFE to describe physical 

fields, the “S” and “T” in Eq. (2.1) and Eq. (2.2) represent any physical quantity.  

For the purpose of this article, we set the “S” being motion parameters, velocity 𝐯 and 

classical spin 𝐒𝐜!"#$%"!, (abbreviated 𝐒𝐜), 

𝐒 = 𝐯 vector        
 𝐒 = 𝐒𝐜 axial vector      .             (2.3) 

Note: the physical quantities S represents are not limited to those listed in Eq. (2.3). 

 Substituting Eq. (2.3) into Eq. (2.1) and Eq. (2.2) respectively, we obtain, 

 ∇× 𝐯×𝐓 = 𝐯 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐯 + 𝐓 ∙ ∇ 𝐯 − 𝐯 ∙ ∇ 𝐓,       (2.4) 

 ∇× 𝐯×𝐓 = 𝐯 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐯 − ∇ 𝐯 ∙ 𝐓 + 2 𝐓 ∙ ∇ 𝐯 + 𝐯× ∇×𝐓 + 𝐓×(∇×𝐯). (2.5) 

 ∇× 𝐒𝐜×𝐓 = 𝐒𝐜 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐒𝐜 + 𝐓 ∙ ∇ 𝐒𝐜 − 𝐒𝐜 ∙ ∇ 𝐓,      (2.6)  

 ∇× 𝐒𝐜×𝐓 = 𝐒𝐜 ∇ ∙ 𝐓 − 𝐓 ∇ ∙ 𝐒𝐜 − ∇ 𝐒𝐜 ∙ 𝐓 + 2 𝐓 ∙ ∇ 𝐒𝐜 + 𝐒𝐜× ∇×𝐓 + 

              +𝐓×(∇×𝐒𝐜).             (2.7) 

 

2.2. Duality 

“Duality is one of the most fruitful ideas in Mathematics, has constantly been generalized 

and has guided the development of Mathematics. Duality in mathematics is not a theorem, but a 

‘principle’. It has a simple origin, it is very powerful and useful. Fundamentally duality gives two 

different points of view of looking at the same object, which in principle are all dualities. In some 

cases, ‘duality’ and ‘symmetry’ means essentially the same thing” [2].  

We suggest that the contrary is true. Namely, duality gives one point of view of looking at 

the different objects, which in principle are all dualities. We show that this point of view of 

duality is also “powerful, fruitful and guidance” in this article. 

Eq. (2.1), Eq. (2.2), and Eq. (2.4) to Eq. (2.7) are mathematically equivalent and, thus, are 

dual to each other. For studying dualities between different fields that are cross products of 

combinations of the different “S” and “T”, we argue: 

“Mathematical identities lead to mathematical dualities that lead to physical dualities. 

Duality discloses the similarity of intrinsic nature of apparently different interactions”. 

 

2.2.1. Type-1 duality and Type-2 duality 

The “T” in Eq. (2.4) to Eq. (2.7) may be either a vector field 𝐓!"#$%& (abbreviated 𝐓𝐯) or 
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an axial vector field 𝐓!"#!$!!"#$%& (abbreviated 𝐓𝐚𝐯) or a field 𝐓𝐜!"#$%&'$!% (abbreviated 𝐓𝐜) 

that is the combination of a vector and an axial vector 𝐓𝐜 = 𝐓𝐯 + 𝐓𝐚𝐯.  

For convenient in studying dualities, with different “T”, let’s introduce different categories 

of axial vector fields: 

First level axial vector field (abbreviated FAF): “𝐜” is defined as the cross product of 𝐚 and b, 

𝐜 ≡ 𝐚×𝐛, where both the “𝐚” and “𝐛” are vector field, denote “𝐜” as FAF. 

Second level axial vector field (abbreviated SAF): “𝐝” is defined as the cross product of 𝐞 and f, 

𝐝 ≡ 𝐞×𝐟, where the “𝐞” is a vector field and “𝐟” is a first level axial vector field, denote “𝐝”  

as SAF.  

Third level axial vector field (abbreviated TAF): “𝐧” is defined as the cross product of 𝐪 and p, 

𝐧 ≡ 𝐪×𝐩, where both the “𝐪” and “𝐩” are first level axial vector fields, denote “𝐧” as TAF. 

To summarize, let’s assign different numbers to vector and axial vector: “1” to vector; “2” to first 

level axial vector; “3” to second lever axial vector, and so on. The lever of a cross product of two 

quantities is: # of first quantity plus the # of second quantity subtract 1, then the result number is 

the level of the cross product.  

Now let’s introduce two categories of dualities as following: 

Type-1 duality: for an axial field 𝐖!"#$%" ≡ 𝐒×𝐓, under transformation(s) of either 𝐒 or 𝐓 or 

both 𝐒 and 𝐓, the field 𝐖!"#$%" transfers to 𝐖!"#$%. Under two conditions: (1) 𝐖!"#$% and 

𝐖!"#$%" are same level axial vector field; (2) the field equations describing respectively 𝐖!"#$% 

and 𝐖!"#$%" have either the same form or are mathematically equivalent; then there is a Type-1 

duality between 𝐖!"#$% and 𝐖!"#$%".  

Type-2 duality: for an axial field 𝐖!"#$%" ≡ 𝐒×𝐓, under transformation(s) of either 𝐒 or 𝐓 or 

both 𝐒 and 𝐓, the field 𝐖!"#$%" transfers to 𝐖!"#$%. Under two conditions: (1) 𝐖!"#$% and 

𝐖!"#$%" are different level axial vector fields; (2) the field equations describing respectively 

𝐖!"#$% and 𝐖!"#$%" have either the same form or are mathematically equivalent; then there is a 

Type-2 duality between 𝐖!"#$% and 𝐖!"#$%".  

 Note: during the transformation of Type-2 duality, at least one term in equation will become 

zero. For keeping the same form of equations, we still keep the zero-term for the purpose of 

discussing duality. Then, in later calculation, ignore those zero-terms. 

Specific examples of type-1 duality: 

In the following examples, n is an integer and n = 1, 2, 3…. 

Example 1: Corresponding to different axial vector fields 𝐓𝐚𝐯𝐧, the fields 𝐯×𝐓𝐚𝐯𝐧 are 

SAF. Dualities between those SAFs are type-1 duality, i.e., under transformation, 

𝐓𝐚𝐯𝟏 ↔ ⋯ ↔ 𝐓𝐚𝐯𝐧 

there are conversions between the SAFs, 

𝐯×𝐓𝐚𝐯𝟏 ↔ ⋯ ↔ 𝐯×𝐓𝐚𝐯𝐧, (𝐧 ≠ 𝟏) 

and between UMFE describing them. 

Example 2: Corresponding to different axial vector fields 𝐓𝐚𝐯𝐧, the fields 𝐒𝒄×𝐓𝐚𝐯𝐧 are 

TAF. Dualities between those TAFs are type-1 duality, i.e., under transformation, 

𝐓𝐚𝐯𝟏 ↔ ⋯ ↔ 𝐓𝐚𝐯𝐧 

we have conversions between the TAFs, 
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𝐒𝒄×𝐓𝐚𝐯𝟏 ↔ ⋯ ↔ 𝐒𝒄×𝐓𝐚𝐯𝐧, (𝐧 ≠ 𝟏) 

and between UMFE describing them. 

Specific examples of type-2 duality: 

Example 1: Corresponding to a vector field 𝐓𝐯𝐧 and an axial vector field 𝐓𝐚𝐯𝐧, the fields 𝐯×𝐓𝐯𝐧 

and fields 𝐯×𝐓𝐚𝐯𝐧 are FAF and SAF respectively.  

Duality between 𝐯×𝐓𝐯𝐧 and 𝐯×𝐓𝐚𝐯𝐧 is type-2 duality. 

Example 2: same as Example 1, but replace v with 𝐒𝒄. 

Example 3: Corresponding to a vector field 𝐓𝐯𝐧, the field 𝐯×𝐓𝐯𝐧 and field 𝐒𝒄×𝐓𝐯𝐧 are FAF  

 and SAF respectively. Duality between 𝐯×𝐓𝐯𝐧 and 𝐒𝒄×𝐓𝐯𝐧 is type-2 duality. 

Example 4: same as Example 3, but replace 𝐓𝐯𝐧 with 𝐓𝐚𝐯𝐧. 

 

2.2.2. Transferability between Dualities 

The mathematical type-1 duality and type-2 duality can be transferred. We propose Transfer 

Rules: 

(1) There are type-1 duality between A and B, and type-1 duality between C and D. If the duality 

between A and C is type-1, then the duality between B and D is type-1, and vice versa; 

(2) There are type-2 duality between A and B, and type-2 duality between C and D. If the duality 

between A and C is type-1, and if B and D are the same lever axial fields, then the duality 

between B and D is type-1, and vice versa; 

(3) There are type-1 (or type 2) duality between A and B; and C is mathematical equivalent to A. 

There is D that is mathematical equivalent to B, and is type-1 (or type 2) dual to C. 

(4) There is type-1 (or type 2) duality between A and B; and C is mathematical equivalent to A. 

There is a type-1 (or type 2) dual of C, which is mathematical equivalent to B. 

 

2.3. UMFE Related with Velocity of Charges 

The basic concept is that the combination of the inverse-square laws and the motion of 

charges must induce axial vector fields. Fortunately, Eq. (2.1) and Eq. (2.2) link the motion of 

sources and the inverse-square laws. In this section we start with Eq. (2.4) to derive the 

Maxwell-type equations for the fields induced by the velocity of sources.  

Note in Eq. (2.4), the velocity is spatially varying, e.g., 𝐓 ∇ ∙ 𝐯 ≠ 0, 𝐓 ∙ ∇ 𝐯 ≠ 0, and is 

instantaneous velocity at a given space point. Eq. (2.4) implies that a velocity and its spatial 

variations induce the axial vector 𝐯×𝐓  field.  

 

2.3.1. Ampere-Maxwell-type UMFE	  

Firstly, we derive the Ampere-Maxwell-type UMFE. Let’s assume the T is an arbitrary 

vector field 𝐆 and ∇ ∙ 𝐆 ≠ 0. Since 

 − 𝐯 ∙ ∇ 𝐆 = − v!
!
!!
+ v!

!
!!
+ v!

!
!!

𝐆 = !𝐆
!!
− !𝐆

!"
,       (2.8) 

substituting Eq. (2.8) into Eq. (2.4), we obtain the Ampere-Maxwell-type UMFE 

 ∇× 𝐯×𝐆 + !𝐆
!"
= 𝐯 ∇ ∙ 𝐆 + !𝐆

!!
− 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯.      (2.9) 

Defining a FAF M,  
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 𝐌 ≡ 𝐯×𝐆.                (2.10) 

For the axial vector field M, we have,  

 ∇ ∙𝐌 = 0.                (2.11) 

Substituting Eq. (2.10) into Eq. (2.4) and Eq. (2.9) respectively, we obtain 

 ∇×𝐌 = 𝐯 ∇ ∙ 𝐆 − 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯 − 𝐯 ∙ ∇ 𝐆.       (2.12) 

 ∇×𝐌 + !𝐆
!"
= 𝐯 ∇ ∙ 𝐆 + !𝐆

!!
− 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯.       (2.13) 

All terms on the right hand side of Eq. (2.13) induce equally the axial vector field M. The 

interpretations for those terms are, 

1) The term, 𝐯 ∇ ∙ 𝐆 , plays the role of the “current”; 

2) The term, !𝐆
!!

, plays the role of the “displacement current”; 

3) The term, 𝐆 ∇ ∙ 𝐯 , describes stretching of the G field due to source velocity compressibility; 

4) The term, 𝐆 ∙ ∇ 𝐯, describes the stretching or tilting of the G field due to the velocity 

gradients; 

5)  The terms, !𝐆
!!

 and 𝐆 ∇ ∙ 𝐯 , have the same direction; while the terms, 𝐯 ∇ ∙ 𝐆  and 

𝐆 ∙ ∇ 𝐯, have the same direction. 

The Ampere-Maxwell-type UMFE, Eq. (2.9), Eq. (2.12), Eq. (2.13), can be written respectively 

in the integral form as, 

 𝐯×𝐆 ∙ d𝐥 + !
!"

𝐆 ∙ ds = 𝐯 ∇ ∙ 𝐆 + !𝐆
!!
− 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯 ∙ ds.  (2.14) 

 𝐌 ∙ d𝐥 = 𝐯 ∇ ∙ 𝐆 − 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯 − 𝐯 ∙ ∇ 𝐆 ∙ ds.     (2.15) 

 𝐌 ∙ d𝐥 + !
!"

𝐆 ∙ ds = 𝐯 ∇ ∙ 𝐆 + !𝐆
!!
− 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯 ∙ ds.   (2.16) 

 

2.3.2. Faraday-type UMFE  

For deriving the Faraday-type UMFE, taking the 𝐓 field as a FAF 𝐌 defined by Eq. (2.10), 

𝐓 = 𝐌. For the 𝐌 field, we have, 

 − 𝐯 ∙ ∇ 𝐌 = − v!
!
!!
+ v!

!
!!
+ v!

!
!!

𝐌 = !𝐌
!!
− !𝐌

!"
.      (2.17) 

Substituting Eq. (2.17) into Eq. (2.4), we obtain Faraday-type UMFE, 

∇× 𝐯×𝐌 + 𝐝𝐌
𝐝𝐭
= 𝐯 ∇ ∙𝐌 + 𝛛𝐌

𝛛𝐭
−𝐌 ∇ ∙ 𝐯 + 𝐌 ∙ ∇ 𝐯.     (2.18) 

Let’s define a SAF N, 

𝐍 ≡ −𝐯×𝐌,               (2.19) 

which satisfies, 

 ∇ ∙ 𝐍 = 0.               (2.20) 

Substituting Eq. (2.19) into Eq. (2.18), we obtain Faraday-type UMFE, 

 ∇×𝐍 − 𝐝𝐌
𝐝𝐭
= −𝐯 ∇ ∙𝐌 − 𝛛𝐌

𝛛𝐭
+𝐌 ∇ ∙ 𝐯 − 𝐌 ∙ ∇ 𝐯.      (2.21)  

The term 𝐯 ∇ ∙𝐌  is the source term. We still keep the source term in Eq. (2.21), because, 

this source term leaves a door open for a possible existence of a monopole physically, although, 

mathematically, the monopole of the M field does not exist. 

The interpretations of those right hand side terms of Eq. (2.21) are, 
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1) The term, 𝐯 ∇ ∙𝐌 , plays the role of the “current”, which is mathematically zero; 

2) The term, !𝐌
!!

, describes the time change of the M fields as the source; 

3) The term, 𝐌 ∇ ∙ 𝐯 , describes stretching of the M field due to source velocity compressibility; 

4) The term, 𝐌 ∙ ∇ 𝐯, describes the stretching or tilting of the M field due to the velocity 

gradients; 

5)  The terms, !𝐌
!!

 and 𝐌 ∇ ∙ 𝐯 , have the same direction; while the terms, 𝐯 ∇ ∙𝐌  and 

𝐌 ∙ ∇ 𝐯, have the same direction. 

Next taking ∇ ∙𝐌 = 0, substituting it into Eq. (2.18) and Eq. (2.21) respectively, we obtain 

source-free Faraday-type UMFE, 

∇× 𝐯×𝐌 + 𝐝𝐌
𝐝𝐭
= 𝛛𝐌

𝛛𝐭
−𝐌 ∇ ∙ 𝐯 + 𝐌 ∙ ∇ 𝐯,        (2.22)  

∇×𝐍 − 𝐝𝐌
𝐝𝐭
= − 𝛛𝐌

𝛛𝐭
+𝐌 ∇ ∙ 𝐯 − 𝐌 ∙ ∇ 𝐯.        (2.23)  

The Faraday-type UMFE, Eq. (2.18) and Eq. (2.21), can be written respectively in the integral 

form as,  

 𝐯×𝐌 ∙ d𝐥 + !
!"

𝐌 ∙ ds = 𝐯 ∇ ∙𝐌 + 𝛛𝐌
𝛛𝐭
−𝐌 ∇ ∙ 𝐯 + 𝐌 ∙ ∇ 𝐯 ∙ ds. (2.24) 

 𝐍 ∙ d𝐥 − !
!"

𝐌 ∙ ds = − 𝐯 ∇ ∙𝐌 + 𝛛𝐌
𝛛𝐭
−𝐌 ∇ ∙ 𝐯 + 𝐌 ∙ ∇ 𝐯 ∙ ds.  (2.25) 

 

2.3.3. Type-2 Duality 

The 𝐌 field is a FAF, while the 𝐍 field is a SAF. The 𝐌 field and the 𝐍 field are 

determined respectively by Eq. (2.16) and Eq. (2.25), which have the same form. Thus there is 

type-2 duality between the FAF M and the SAF N, which is pre-determined mathematically. 

We have derived the basic UMFE for the fields induced by velocity of sources.  

 

2.3.4. UMFE Related with Non-Spatially-Varying Velocity of Charges  

For non-spatially-varying, we have 

 ∇ ∙ 𝐯 = 𝐓 ∙ ∇ 𝐯 = 𝛁×𝐯 = 0,	            (2.26) 

Substituting Eq. (2.26) into Eq. (2.13), we obtain Ampere-Maxwell-type UMFE for the M field, 

 ∇×𝐌 + !𝐆
!"
= 𝐯 ∇ ∙ 𝐆 + !𝐆

!!
.            (2.27) 

Or in the integral forms, 

 𝐌 ∙ d𝐥 + !
!"

𝐆 ∙ ds = 𝐯 ∇ ∙ 𝐆 + 𝛛𝐆
𝛛𝐭

∙ ds.       (2.28) 

Substituting Eq. (2.26) into Eq. (2.23), we obtain Faraday-type UMFE for the N field, 

 ∇×𝐍 − 𝐝𝐌
𝐝𝐭
= − 𝛛𝐌

𝛛𝐭
.             (2.29)  

Or in the integral forms,  

 𝐍 ∙ d𝐥 − !
!"

𝐌 ∙ ds = − !𝐌
!!
∙ ds.          (2.30)  

 

2.4. UMFE Related with Spin 

In this section, we derive UMFE governing fields induced by Spin of charges, where spin 

has no physical meaning, only represents a states of motion. 
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2.4.1. General UMFE  

Eq. (2.7) implies that the spin of charges indeed induces inevitably an axial vector field, 

𝐒𝐜×𝐓 . We start with Eq. (2.7). For a vector field T, the 𝐒𝐜×𝐓  is a SAF; for an axial field T, 

the 𝐒𝐜×𝐓  is a TAF. 

Following the definitions, 𝐌 ≡ 𝐯×𝐆 and 𝐍 ≡ −𝐯×𝐌, let’s define a SAF W and a TAF Z：  

𝐖 ≡ 𝐒𝐜×𝐆,               (2.31) 

𝐙 ≡ −𝐒𝐜×𝐌.               (2.32) 

The SAF 𝐖 and the TAF 𝐙 satisfy respectively, 

 ∇ ∙𝐖 = 0,               (2.33) 

 ∇ ∙ 𝐙 = 0.               (2.34) 

Firstly, derive Ampere-type UMFE for the W field. Let 𝐓 = 𝐆, and ∇ ∙ 𝐆 ≠ 0. Substituting 

Eq. (2.31) into Eq. (2.7), we obtain Ampere-type UMFE for the W field, 

    ∇×𝐖 = 𝐒𝐜 ∇ ∙ 𝐆 − 𝐆 ∇ ∙ 𝐒𝐜 − ∇ 𝐒𝐜 ∙ 𝐆 + 2 𝐆 ∙ ∇ 𝐒𝐜 + 𝐒𝐜× ∇×𝐆 + 

          +𝐆×(∇×𝐒𝐜).              (2.35) 

Secondly, derive Ampere-type UMFE for the Z field. Let 𝐓 = 𝐌, where 𝐌 is the FAF 

defined by Eq. (2.10). Substituting Eq. (2.32) into Eq. (2.7), we obtain Ampere-type UMFE for 

the Z field, 

 ∇×𝐙 = −𝐒𝐜 ∇ ∙𝐌 +𝐌 ∇ ∙ 𝐒𝐜 + ∇ 𝐒𝐜 ∙𝐌 − 2 𝐌 ∙ ∇ 𝐒𝐜 − 𝐒𝐜× ∇×𝐌 − 

         −𝐌×(∇×𝐒𝐜).             (2.36) 

 

2.4.2. Type-2 Duality 

The equations of the W field, Eq. (2.35), and the Z field, Eq. (2.36), are all derived from the 

same equations, Eq. (2.7), thus there is type-2 duality between the SAF W and the TAF Z fields. 

 

2.4.3. Faraday-type UMFE 

Substituting Eq. (2.13) into Eq. (2.36), we obtain the Faraday-type UMFE, 

∇×𝐙 = − !𝐖
!!
− 𝐒𝐜 ∇ ∙𝐌 +𝐌 ∇ ∙ 𝐒𝐜 + ∇ 𝐒𝐜 ∙𝐌 − 2 𝐌 ∙ ∇ 𝐒𝐜 −𝐌×(∇×𝐒𝐜)  

      −𝐒𝐜× − !𝐆
!"
+ 𝐯 ∇ ∙ 𝐆 − 𝐆 ∇ ∙ 𝐯 + 𝐆 ∙ ∇ 𝐯 + !𝐒𝐜

!!
×𝐆.   (2.37) 

 

2.4.4. UMFE Related with Non-Spatially-Varying Spin of Charges 

For non-spatially varying spin 𝐒𝐜 and velocity v, we have  

 ∇ ∙ 𝐒𝐜 = 𝐌 ∙ ∇ 𝐒𝐜 = 𝐆 ∙ ∇ 𝐒𝐜 = 𝛁×𝐒𝐜 = ∇ ∙ 𝐯 = 𝐆 ∙ ∇ 𝐯 = 0.	

Substituting into Eq. (2.35) and Eq. (2.37) respectively, we obtain 

 ∇×𝐖 = 𝐒𝐜 ∇ ∙ 𝐆 − ∇ 𝐒𝐜 ∙ 𝐆 + 𝐒𝐜× ∇×𝐆 .         (2.38) 

    ∇×𝐙 = − !𝐖
!!
− 𝐒𝐜 ∇ ∙𝐌 + ∇ 𝐒𝐜 ∙𝐌 − 𝐒𝐜× − !𝐆

!"
+ 𝐯 ∇ ∙ 𝐆 + !𝐒𝐜

!!
×𝐆.  (2.39) 

 

2.5. Dualities between UMFEs Related with Velocity and Spin 

UMFE describing fields induced by velocity and spin are derived from the same 

mathematical formulas, Eq. (2.1). Thus they are equivalent mathematically. Therefore the duality 

between those fields are determined by their definitions, 
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FAF including: 𝐌 ≡ 𝐯×𝐆,  

SAF including: 𝐍 ≡ −𝐯×𝐌, 𝐖 ≡ 𝐒𝐜×𝐆, 

TAF including: 𝐙 ≡ −𝐒𝐜×𝐌.              

Therefore there is type-1 duality between SAF fields, i.e., N and W field. There are type-2 

dualities between different level axial fields: (1) between FAF and SAF, i.e., M and N fields, M 

and W fields; (2) between FAF and TAF, i.e., M and Z fields; and (3) between SAF and TAF, i.e., 

N and Z fields, W and Z fields. 

 

Part 2: Electromagnetics and Classical-Spin-Electromagnetics 

3. Extended EM Derived from UMFE and Coulomb’s Law 

We re-derive mathematically Maxwell equations from UMFE and the Coulomb’s law to 

show that UMFE is valid for physic fields, which leads us to apply UMFE to other physical fields, 

such as spin-induced fields. 

 

3.1. Extended Faraday’s Law 

 Starting from the Faraday-type UMFE, Eq. (2.28). Let the 𝐌 field is a magnetic field 𝐁, 

𝐌 = 𝐁, Eq. (2.28) gives , 

 − 𝐯×𝐁 ∙ d𝐥 − !
!"

𝐁 ∙ ds = − 𝐯 ∇ ∙ 𝐁 + 𝛛𝐁
𝛛𝐭
− 𝐁 ∇ ∙ 𝐯 + 𝐁 ∙ ∇ 𝐯 ∙ ds. (3.1) 

Let’s show that Eq. (3.1) consists with Faraday’s law.  

The Faraday’s law gives 

 !
!"

𝐁 ∙ ds = − 𝐄′ ∙ dl            (3.2) 

where 𝐄′ is the electric field at the circuit dl in a reference frame in which dl is at rest. The B is a 

magnetic field at the neighborhood of the circuit.  

Applying Eq. (3.2), Eq. (3.1) becomes the extended Faraday law, 

 (𝐄! − 𝐯×𝐁) ∙ 𝑑𝑙 = − 𝐯 ∇ ∙ 𝐁 + 𝛛𝐁
𝛛𝐭
− 𝐁 ∇ ∙ 𝐯 + 𝐁 ∙ ∇ 𝐯 ∙ ds,   (3.3) 

where the v is the velocity of the circuit relative to a laboratory frame.  

From Galilean invariance, one can define an electric field E in the laboratory frame, 

 𝐄 = 𝐄! − 𝐯×𝐁.              (3.4) 

Applying Eq. (3.4), Eq. (3.3) gives the integral and differential forms of Extended Faraday’s law, 

 𝐄 ∙ 𝑑𝑙 = − 𝐯 ∇ ∙ 𝐁 + 𝛛𝐁
𝛛𝐭
− 𝐁 ∇ ∙ 𝐯 + 𝐁 ∙ ∇ 𝐯 ∙ ds,     (3.5) 

 ∇×𝐄 = −𝐯 ∇ ∙ 𝐁 − !𝐁
!!
+ 𝐁 ∇ ∙ 𝐯 − 𝐁 ∙ ∇ 𝐯.        (3.6) 

Let’s define a “current” generating induced electric field, denote it as  

 𝐣𝐯!𝐄 ≡ 𝐯 ∇ ∙ 𝐁 − 𝐁 ∇ ∙ 𝐯 + 𝐁 ∙ ∇ 𝐯.         (3.7) 

Where the subscripts “v” and “E” represent the quantity related with velocity and electric field 

respectively. Then Extended Faraday’s law, Eq. (3.6), may be rewritten as, 

 ∇×𝐄 = −𝐣𝐯!𝐄 −
!𝐁
!!

.             (3.8) 

The equation of continuity is 

 ∇ ∙ 𝐣𝐯!𝐄 = 0.               (3.9) 

 The interpretations of terms of the right hand side of Eq. (3.6) are, 
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1) The term, 𝐁 ∇ ∙ 𝐯 , describes stretching of the B field due to source velocity compressibility; 

2) The term, 𝐁 ∙ ∇ 𝐯, describes the stretching or tilting of the B field due to the velocity 

gradients; 

For the situation in which, (1) ∇ ∙ 𝐁 = 0; and (2) the velocity is non-spatially-varying, i.e., 

𝐁 ∇ ∙ 𝐯 = 𝐁 ∙ ∇ 𝐯 = 0, Extended Faraday’s law, Eq. (3.6), reduces to the Faraday’s law, 

 ∇×𝐄 = − !𝐁
!!

,               (3.10) 

where the 𝐄 field is an axial vector field.  

Therefore the extended Faraday’s law, Eq. (3.1), is consistent with the Faraday’s law. 

Extended Faraday’s law predicts that the spatially-varying velocity, such as e-particles 

distributing and moving in space, terms 𝐁 ∇ ∙ 𝐯  and 𝐁 ∙ ∇ 𝐯 induce axial E fields. 

 

3.2. Extended Ampere-Maxwell’s Law (1) 

The combination of UMFE and Coulomb’s law leads us to let 𝐆 = 𝐄. Then Eq. (2.18) of 

UMFE becomes, 

 (𝐯×𝐄) ∙ d𝐥 + !
!"

𝐄 ∙ ds = 𝐯 ∇ ∙ 𝐄 + !𝐄
!!
− 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 ∙ ds.  (3.11) 

 

3.3. Type-2 Duality between Electric and Magnetic Fields 

The FAF (𝐯×𝐄) and Eq. (3.13) is the type-2 dual of the SAF 𝐯×𝐁  and Eq. (3.1). 

Moreover, Eq. (3.5) is equivalent to Eq. (3.1). Based on the Transfer Rules between dualities of 

Section 2.2.2, there is a dual of Eq. (3.5), i.e., under transformation, 

𝐄 ↔ 𝐁 and 𝐁 ↔ −𝐄, 

we have a type-2 dual of Eq. (3.5), which is,  

 𝐁 ∙ 𝑑𝑙 = 𝐯 ∇ ∙ 𝐄 + 𝛛𝐄
𝛛𝐭
− 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 ∙ ds,      (3.12) 

which should be equivalent to Eq. (3.11).  

With distinguishable feature of “type-1 duality” and “type-2 duality”, the duality between 

induced electric field determined by the Faraday’s law and magnetic field determined by 

Ampere-Maxwell’s equation is actually a type-2 duality. UMFE provide the mathematical 

originations of the type-2 duality between axial electric field and magnetic field. 

 

3.4. Extended Ampere-Maxwell’s Law (2) 

Eq. (3.12) gives Extended Ampere-Maxwell law,  

 ∇×𝐁 = 𝐯 ∇ ∙ 𝐄 + 𝛛𝐄
𝛛𝐭
− 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯.        (3.13) 

The magnetic field B is, in the laboratory frame, 

 𝐁 = 𝐁! + 𝐯×𝐄.              (3.14) 

Where 𝐁′ is the magnetic field at the circuit dl in a reference frame in which dl is at rest. The E 

is an electric field at the neighborhood of the circuit. The v is the velocity of the circuit relative to 

a laboratory frame.  

Note there is no negative sign in front of the 𝛛𝐄
𝛛𝐭

, because that the time change of the E field 

through the circuit purely induces a magnetic field 𝐁′ that does not accumulate e-particles to 
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against the time change of the E field.  

 

3.5. Equation of Continuity  

Let’s define a “current” generating magnetic field, denote it as  

 𝐣𝐯!𝐁 = 4πρ!𝐯 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯.          (3.15) 

Where the subscripts “v” and “B” represent the quantity related with velocity and magnetic field 

respectively. Then Eq. (3.13) becomes, 

 ∇×𝐁 = 𝐣𝐯!𝐁 +
𝛛𝐄
𝛛𝐭

.              (3.16) 

The current 𝐣𝐯!𝐁 satisfies the equation of continuity, 

 ∇ ∙ 𝐣𝐯!𝐁 +
𝛛!!
𝛛𝐭
= 𝟎.             (3.17) 

For the situation of the non-spatially-varying velocity, i.e.,  

𝐄 ∇ ∙ 𝐯 = 𝐄 ∙ ∇ 𝐯 = 0, 

we have 𝐣𝐯!𝐁 = 4πρ!𝐯, Extended Ampere-Maxwell equation, Eq. (3.16), reduces to the 

Ampere-Maxwell law.  

Extended Ampere-Maxwell’s law, (1) predicts that the products, 𝐄 ∇ ∙ 𝐯  and 𝐄 ∙ ∇ 𝐯, 

induce respectively axial E field; (2) provides a mathematical interpretations why and how 

e-current and displacement e-current induce inevitably magnetic fields. 

 

3.6. Coulomb Force Extended to Lorentz Force 

In a reference frame S’ in which a test e-particle q! is at rest, an electric field is denote as 

E’. The force acting on the test e-particle is the Coulomb force, 

 𝐅 = q!𝐄!.               (3.18) 

Transferring to a laboratory frame in which the test e-particle is moving with velocity v, Eq. 

(3.4) gives, 

 𝐄! = 𝐄 + 𝐯×𝐁,              (3.19) 

where the electric field E is measured in the laboratory frame. The B is a magnetic field at the 

neighborhood of the test e-particle. Substituting Eq. (3.19) into Eq. (3.18), the Coulomb force 

transfers to the Lorentz force measured in the laboratory frame, 

 𝐅 = q!𝐄 + q!𝐯×𝐁.             (3.20) 

 

3.7. Why Static Electric Field so Different from Magnetic Field 

In Introduction, we have mentioned several fundamental differences: “A magnetic field is 

completely different from a static electric field in the following senses: (1) “e-particle” vs. 

“e-current”; (2) “∇ ∙ 𝐄” vs. “∇×𝐁”; (3) “vector field E” vs. “axial vector field B”; (4) “q!𝐄” vs. 

“q!𝐯×𝐁”. 

In this section we have explained those differences: 

(1) Comparison of Eq. (3.6) and Eq. (3.13) explains the first, second and third differences as the 

following: e-particle ρ induces E via ∇ ∙ 𝐄 = 4πρ; it is UMFE combining with the Coulomb 

law that makes the term, 𝐯 ∇ ∙ 𝐄 = 4πρ𝐯, induces B field via ∇×𝐁; static e-field E is a 
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vector field, and 𝐁~𝐯×𝐄 is a first level axial vector field. All of above differences comes 

from a mathematical origin, Eq. (2.1). 

(2) Eq. (3.18) and Eq. (3.20) show how the Coulomb force extends to Lorentz force, when a test 

e-particle is moving. 

 

4. Classical-Spin-Electromagnetics Derived from UMFE and Coulomb’s Law  

Let’s mathematically establish C-Spin-EM and apply it to study classical phenomena related 

with spin systematically.  

 

4.1. C-Spin-EM 

4.1.1. Definitions of Spin-electric Field and Spin-magnetic Field and Experiment 

Let’s consider a spinning e-particle characterize by electric charge Q! and spin 𝐒!. UMFE 

shows that the spin of an arbitrary source induces W and Z fields. To applying UMFE to the spin 

of an e-particle, let 𝐆 = 𝐄, 𝐌 = 𝐁, and define 

𝐁𝐬 ≡ 𝐒𝐜×𝐄,               (4.1) 

𝐄𝐬 ≡ −𝐒𝐜×𝐁,               (4.2) 
𝐁𝐬
𝐄𝐬
= − 𝐒𝐜×𝐄

𝐒𝐜×𝐁
,               (4.3) 

Naming 𝐄𝐬 as spin-electric field, 𝐁𝐬 as spin-magnetic field. Subscript “s” indicates the quantity 

related to spin. The electric (magnetic) field can be either an externally applied electric (magnetic) 

field or a local electric (magnetic) field induced by nearby/lattice e-particles in the material. The 

𝐁𝐬 and 𝐄𝐬 are type-2 dual to the B and E fields, respectively. 

The 𝐁𝐬 and 𝐄𝐬 are SAF and TAF respectively, and mathematically satisfy, 

 ∇ ∙ 𝐁𝐬 = 0,               (4.4) 

 ∇ ∙ 𝐄𝐬 = 0.               (4.5) 

We still keep those divergence terms in some of equations of C-Spin-EM, as well the magnetic 

monopole term ∇ ∙ 𝐁, which shows the nature and the breaking mechanism of duality.  

 If there are “spin-charges” and “Spin-monopole”, then we have (Appendix), 

 ∇ ∙ 𝐁𝐬 ≠ 0,               (4.6) 

 ∇ ∙ 𝐄𝐬 ≠ 0.               (4.7) 

The definitions, Eq. (4.1) and Eq. (4.2), predict two categories of phenomena. 

Firstly, by interacting with an electric field E (magnetic field 𝐁), the spin of e-particles 

induces an effective spin-magnetic field 𝐁𝐬 (effective spin-electric field 𝐄𝐬).  

Secondly, the spin of an e-particle in an electric field E (magnetic field 𝐁) will experience 

an effective spin-magnetic field 𝐁𝐬 (effective spin-electric field 𝐄𝐬). 

Remark: the definitions of 𝐁𝐬 and 𝐄𝐬 are conceptually different from that of Q-Spin-EM. 

Testing Experiment 1: An e-particle 1, either without spin or with zero net spin outside a 

material, which induces an electric field that penetrates into the material (Fig.1). A spinning 

e-particle 2 inside the material will experience an electric field and an effective spin-magnetic 

field. Also the e-particle 2 induces an effective spin-magnetic field. 

 If the orientations of spins of e-particles inside the material are aligned, then the induced 
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effective spin-magnetic field can be detected, which will justify Eq. (4.1) and Eq. (4.2). 

       an e-particle 1 without spin 

 

 

 

 

Fig.1 

 

4.1.2. C-Spin-EM Derived from UMFE and Coulomb Law 

We can derive C-Spin-EM with three approaches: from Eq. (2.6), from Eq. (2.7), and, based 

on duality, from Extended EM. The so derived three C-Spin-EMs are mathematically equivalent.  

We start with Eq. (2.7). Combination of Eq. (2.7), Eq. (4.1) and Eq. (4.2) gives Ampere-type 

equations for fields induced by spin of the e-particle respectively, 

 ∇×𝐁𝐬 = 𝐒𝐜 ∇ ∙ 𝐄 − 𝛁 𝐒𝐜 ∙ 𝐄 − 𝐄 ∇ ∙ 𝐒𝐜 + 2 𝐄 ∙ ∇ 𝐒𝐜 + 𝐄×(𝛁×𝐒𝐜) + 

           +𝐒𝐜× 𝛁×𝐄 ,             (4.8)  

 ∇×𝐄𝐬 = −𝐒𝐜 ∇ ∙ 𝐁 + ∇ 𝐒𝐜 ∙ 𝐁 + 𝐁 ∇ ∙ 𝐒𝐜 − 2 𝐁 ∙ ∇ 𝐒𝐜 − 𝐁×(∇×𝐒𝐜) 

           −𝐒𝐜× ∇×𝐁 .             (4.9) 

Substituting Eq. (3.6) and Eq. (3.13) into Eq. (4.8) and Eq. (4.9) respectively, we obtain 

C-Spin-EM, which includes Ampere-Maxwell-type equation and Faraday-type equations, 	  

 ∇×𝐁𝐬 = 𝐒𝐜 ∇ ∙ 𝐄 + !𝐄𝐬
!!
− 𝛁 𝐒𝐜 ∙ 𝐄 − 𝐄 ∇ ∙ 𝐒𝐜 + 2 𝐄 ∙ ∇ 𝐒𝐜 + 𝐄× 𝛁×𝐒𝐜 + 

         +𝐒𝐜× −𝐯 ∇ ∙ 𝐁 + 𝐁 ∇ ∙ 𝐯 − 𝐁 ∙ ∇ 𝐯 ,        (4.10)	  

    ∇×𝐄𝐬 = −𝐒𝐜 ∇ ∙ 𝐁 − 𝛛𝐁𝐬
𝛛𝐭
+ ∇ 𝐒𝐜 ∙ 𝐁 + 𝐁 ∇ ∙ 𝐒𝐜 − 2 𝐁 ∙ ∇ 𝐒𝐜 − 𝐁× ∇×𝐒𝐜 − 

          −𝐒𝐜× 𝐯 ∇ ∙ 𝐄 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 .        (4.11) 

By analogy to “electric current”, let’s define the “spin-magnetic-current 𝐣𝐬!!” and the 

“spin-electric-current 𝐣𝐬!𝐄”, which induce the spin-magnetic field and the spin-electric field 

respectively, as 

 𝐣𝐬!𝐁 ≡ 𝐒𝐜 ∇ ∙ 𝐄 − 𝛁 𝐒𝐜 ∙ 𝐄 − 𝐄 ∇ ∙ 𝐒𝐜 + 2 𝐄 ∙ ∇ 𝐒𝐜 + 𝐄× 𝛁×𝐒𝐜 + 

         +𝐒𝐜× −𝐯 ∇ ∙ 𝐁 + 𝐁 ∇ ∙ 𝐯 − 𝐁 ∙ ∇ 𝐯 ,       (4.12) 

 𝐣𝐬!𝐄 ≡ 𝐒𝐜 ∇ ∙ 𝐁 − ∇ 𝐒𝐜 ∙ 𝐁 − 𝐁 ∇ ∙ 𝐒𝐜 + 2 𝐁 ∙ ∇ 𝐒𝐜 + 𝐁× ∇×𝐒𝐜 + 

          +𝐒𝐜× 𝐯 ∇ ∙ 𝐄 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 .        (4.13) 

Eq. (4.10) and Eq. (4.11) become respectively, 

 ∇×𝐁𝐬 = 𝐣𝐬!𝐁 +
!𝐄𝐬
!!

,             (4.14) 

    ∇×𝐄𝐬 = −𝐣𝐬!𝐄 −
𝛛𝐁𝐬
𝛛𝐭

.              (4.15) 

For the situations, in which spin is non-spatial-varying, i.e., 

𝐄 ∙ ∇ 𝐒𝐜 = 𝛁×𝐒𝐜 = 𝐁 ∙ ∇ 𝐒𝐜 = ∇ ∙ 𝐒𝐜 = 𝟎, 

Eq. (4.10) to Eq. (4.13) become respectively, 

	

	

+	
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 ∇×𝐁𝐬 = 𝐒𝐜 ∇ ∙ 𝐄 + !𝐄𝐬
!!
− 𝛁 𝐒𝐜 ∙ 𝐄 + 𝐒𝐜× −𝐯 ∇ ∙ 𝐁 + 𝐁 ∇ ∙ 𝐯 − 𝐁 ∙ ∇ 𝐯 ,  (4.16) 

    ∇×𝐄𝐬 = −𝐒𝐜 ∇ ∙ 𝐁 − 𝛛𝐁𝐬
𝛛𝐭
+ ∇ 𝐒𝐜 ∙ 𝐁 − 𝐒𝐜× 𝐯 ∇ ∙ 𝐄 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 . (4.17) 

 𝐣𝐬!𝐁 ≡ 𝐒𝐜 ∇ ∙ 𝐄 − 𝛁 𝐒𝐜 ∙ 𝐄 + 𝐒𝐜× −𝐯 ∇ ∙ 𝐁 + 𝐁 ∇ ∙ 𝐯 − 𝐁 ∙ ∇ 𝐯 ,   (4.18) 

 𝐣𝐬!𝐄 ≡ 𝐒𝐜 ∇ ∙ 𝐁 − ∇ 𝐒𝐜 ∙ 𝐁 + 𝐒𝐜× 𝐯 ∇ ∙ 𝐄 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯 .   (4.19) 

The 𝐁𝐬 field and 𝐣𝐬!𝐁 are type-2 dual of the 𝐄𝐬 field and 𝐣𝐬!𝐄 respectively. 

For the situations of non-spatial-varying velocity,  

∇ ∙ 𝐯 = 𝐁 ∙ ∇ 𝐯 = 𝐄 ∙ ∇ 𝐯 = 𝟎, 

C-Spin-EM, Eq. (4.16) to Eq. (4.19), are further simplified to,  

 ∇×𝐁𝐬 = 4πq!𝐒𝐜 +
!𝐄𝐬
!!
− 𝛁 𝐒𝐜 ∙ 𝐄 ,           (4.20) 

    ∇×𝐄𝐬 = − 𝛛𝐁𝐬
𝛛𝐭
+ ∇ 𝐒𝐜 ∙ 𝐁 − 4πq!𝐒𝐜×𝐯.         (4.21) 

 𝐣𝐬!𝐁 = 4πq!𝐒𝐜 − 𝛁 𝐒𝐜 ∙ 𝐄 ,            (4.22) 

 𝐣𝐬!𝐄 = 4πq!𝐒𝐜×𝐯 − ∇ 𝐒𝐜 ∙ 𝐁 .           (4.23) 

The Coulomb’s law, ∇ ∙ 𝐄 = 4πq!, has been used. Eq. (4.20) and Eq. (4.21) show the following:  

(1) The spin, 4πq!𝐒𝐜, and the time change of the 𝐄𝐬 field, !𝐄𝐬
!!

, induce the 𝐁𝐬 field. Those two 

terms are the spin-counterparts of e-current and displacement-current respectively.  

(2) The gradient of the spin-electric field coupling, 𝛁 𝐒𝐜 ∙ 𝐄 , induces the 𝐁𝐬 field. 

(3) The 𝐄𝐬 field is induced by the time change of the 𝐁𝐬 field, !𝐁𝐬
!!

, as well 4π !!
!!
𝐒𝐜×𝐩. 

(4) The gradient of the spin-magnetic field coupling, 𝛁 𝐒𝐜 ∙ 𝐁 , induces the 𝐄𝐬 field. 

Remark: Eq. (4.20) shows that the spin 𝐒𝐜 plays the role of “velocity” generating spin-magnetic 

field, which is conceptually different from that of Q-Spin-EM.  

 

4.1.3. Equations of Continuity of Spin Currents 

The 𝐣𝐬!𝐁  and 𝐣𝐬!𝐄  should satisfy the equation of continuity respectively. Taking 

divergence of Eq. (4.14) and Eq. (4.15) respectively, we obtain 

 ∇ ∙ ∇×𝐁𝐬 = ∇ ∙ 𝐣𝐬!𝐁 + !(∇∙𝐄𝐬)
!!

, 

 ∇ ∙ ∇×𝐄𝐬 = −∇ ∙ 𝐣𝐬!𝐄 − !(∇∙𝐁𝐬)
!!

. 

We face two situations: exist 

Firstly. If spin-charge and spin-monopole exist, then ∇ ∙ 𝐄𝐬 ≠ 𝟎, ∇ ∙ 𝐁𝐬 ≠ 𝟎. We have familiar 

form of Equations of Continuity of Spin Currents, 

 ∇ ∙ 𝐣𝐬!𝐁 + ! ∇∙𝐄𝐬
!!

= 0, 

 ∇ ∙ 𝐣𝐬!𝐄 + ! ∇∙𝐁𝐬
!!

= 0. 

Secondly. if we don’t have spin-charge and spin-monopoles, equations of continuity are 

 ∇ ∙ 𝐣𝐬!𝐁 = 0,              (4.24) 

 ∇ ∙ 𝐣𝐬!𝐄 = 0,              (4.25) 

 To obtain the familiar format of Equations of Continuity, let’s take a different approach. 
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Let’s restudy situations, in which, e-particles carry both e-charge and spin, i.e., e-charge and spin 

are bound together always. Therefore the number density of e-charges is that of spin, namely, the 

time change and space varying of number density of e-charges are that of spin. Spin current is 

associated with e-current. The equation of continuity of e-currents, Eq. (3.19), is 

 ∇ ∙ 𝐣𝐯!𝐁 +
𝛛!!
𝛛𝐭
= 𝟎,             (3.19) 

 𝐣𝐯!𝐁 = 4πnq!𝐯 − 𝐄 ∇ ∙ 𝐯 + 𝐄 ∙ ∇ 𝐯,         (3.17) 

 ρ! = nq!, 

where “n” is the number density of e-charge, and thus of spin; q! is the e-charge of each 

individual e-particle.  

To get the equations of continuity of spin currents, we propose to attach spin to velocity and 

to convert e-charge density ρ! to spin density ρ!. Eq. (3.19) and Eq. (3.17) give  

 ∇ ∙ 𝐣!!! +
!!!
!!
= 𝟎,              (4.26) 

where,  

 𝐣𝐬!𝐁 = 4πnq!𝐒!𝐯 − 𝐄 ∇ ∙ 𝐒!𝐯 + 𝐄 ∙ ∇ 𝐒!𝐯 ,       (4.27) 

 ρ! = 𝐒!q!n.               (4.28) 

Note spin 𝐒! has different orientations, the term, 4πn𝐒!𝐯, need to be expressed as a classical 

pseudo-tensor spin-magnetic-current,  

 j!!!,!" = 4πq!nv!S!" − E! ∇! ∙ 𝐒!𝐯 !" + 𝐄 ∙ ∇ 𝐒!𝐯 !",      (4.29) 

 ρ!" = S!"q!n.               (4.30) 

The generally accepted definition of the spin current pseudo-tensor [3] is, 

    j!"~
!
!
S!v! + v!S! .              (4.31) 

Remark: the classical pseudo-tensor spin current represented by Eq. (4.29) is a classical 

counterpart of the spin current pseudo-tensor represented by Eq. (4.31). 

 

4.1.4. Scalar and Vector Potentials  

Based on duality, defining spin-scalar-potential, φ!, and spin-vector-potential, 𝐀!, as,  

𝐄𝐬 ≡ −∇φ! −
!𝐀!
!!

,              (4.32) 

   𝐁𝐬 ≡ ∇×𝐀!.               (4.33) 

Under the gauge transformation, 

 𝐀! → 𝐀! + ∇Λ!, φ! → φ! −
!!!
!"

,          (4.34) 

the spin-electric and spin-magnetic fields, 𝐄𝐬 and 𝐁𝐬, are invariant. 

 C-Spin-EM potentials can be written in terms of EM potentials. Combining Eq. (4.2), Eq. 

(4.1), Eq. (4.32) and Eq. (4.33), we obtain 

 ∇×𝐀! = −𝐒𝐜×∇φ − 𝐒𝐜×
!𝐀
!!

,           (4.35) 

 −∇φ! −
!𝐀!
!!

= −𝐒𝐜× ∇×𝐀 .           (4.36) 

 

4.1.5. Spin Wave 

 C-Spin-EM predicts classical spin waves described by, 
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 𝛛𝟐𝐁𝐬
𝛛𝐭𝟐

− ∇!𝐁𝐬 = ∇×𝐣𝐬!𝐁 −
!
!!
𝐣𝐬!𝐄,            (4.37) 

    𝛛
𝟐𝐄𝐬
𝛛𝐭𝟐

− ∇!𝐄𝐬 = −∇×𝐣𝐬!𝐄 −
𝛛𝐣𝐬!𝐁
𝛛𝐭

.           (4.38) 

Remark: (1) By duality between EM and C-Spin-EM, spin waves can be quantized and the 

quanta are spin-one Bosons. (2) The propagation speed of spin wave is to be determined. 

          

4.2. C-Spin-EM vs. Q-Spin-EM 

Let’s study the similarity and difference between C-Spin-EM and Q-Spin-EM. To convert to 

quantum theory, we need to introduce the concept of phase. Eq. (4.32) and Eq. (4.33) gives, 

𝐄! ∙ dl = − !
!!

𝐀! ∙ d𝐥,            (4.39) 

 𝐁𝐬 ∙ 𝐝𝐬 = 𝐀! ∙ d𝐥.             (4.40) 

 We define, 

  𝐀! ∙ d𝐥 ≡ Φ!,               (4.41) 

then have 

 Φ! = 𝐁𝐬 ∙ 𝐝𝐬,              (4.42) 

 Φ! = − 𝐄! ∙ d𝐥.              (4.43)  

Defining Φ!  as the phase, e!!! , spin-electric field 𝐄!  and spin-magnetic field 𝐁!  of 

C-Sin-EM have the same form as that of Spin motive force 𝐄!" and Berry curvature 𝐁!" of 

Q-Spin-EM. 

However, the fundamental differences between C-Spin-EM and Q-Spin-EM are the 

definitions of spin-electric field and spin-magnetic field, as well the field equations. 

There are analogies between quantities of EM and quantum anholonomy. Since the type-2 

dualities between EM and C-Spin-EM, we propose that there are analogies between quantities of 

C-Spin-EM and quantum anholonomy, Table 1. 

Table 1: Analogies 

Quantum Anholonomy EM C-Spin-EM 

Berry connection 𝐀 𝐀𝐬 

Berry curvature 𝐁 𝐁! 

Berry phase Magnetic flux Spin-magnetic flux Φ! 

 

4.3. Lagrangian and Hamiltonian  

For a non-relativistic non-spinning e-particle Q! in EM field, the regular Lagrangian and 

Hamiltonian are respectively, 

ℒ!"# =
!
!
mv! + Q!𝐀 ∙ 𝐯 − Q!φ, 

H!"# =
!
!"

p − Q!𝐀 ! + Q!φ.           (4.44) 

For a spinning e-particle in C-Spin-EM fields, the Lagrangian should contain its rotation 



	 20	

energy, KE!"#$ =
!
!
Iω!. Defining aℒ ≡

!!!

(𝐒!)!
, we have 

 KE!"!" ≡
!
!
aℒ(𝐒!)!,             (4.45) 

By the duality between Extended EM and C-Spin-EM, let’s introduce Lagrangian, 

 ℒ!"#$ =
!
!
aℒ(𝐒!)! + Q!𝐀𝐬 ∙ 𝐒𝐜 − Q!φ!.         (4.46) 

Taking into account the interaction between the velocity and spin-vector-potential, and 

between the spin and vector potential, we obtain 

 ℒ!"#$% = Q!𝐀𝐬 ∙ 𝐯 + Q!𝐀 ∙ 𝐒𝐜.           (4.47) 

The total Lagrangian of a spinning e-particle in EM and C-Spin-EM fields is  

    ℒ!"!#$ =
!
!
mv! + Q!𝐀 ∙ 𝐯 − Q!φ +

!
!
aℒ(𝐒𝐜)! + Q!𝐀𝐬 ∙ 𝐒𝐜 − Q!φ! + 

           +Q!𝐀𝐬 ∙ 𝐯 + Q!𝐀 ∙ 𝐒𝐜.            (4.48) 

In the derivation of C-Spin-EM, we have replace velocity v by spin 𝐒𝐜 in UMFE. Now we 

use spin as a “generalized velocity”, substituting it into Hamiltonian,  

 H = 𝑞! !ℒ!"!#$
!!!

− ℒ!"!#$ = v !ℒ!"!#$
!!

+ 𝐒𝐜
!ℒ!"!#$
!𝐒𝐜

− ℒ!"!#$,      (4.49) 

we obtain the Hamiltonian for spinning e-particles, 

 H = 𝐩!!!𝐀!!!𝐀𝐬 !

!!
+ 𝐩!!!!𝐀!!!!! !

!!ℒ
+ Q!φ + Q!φ!,      (4.50) 

which describes dynamics of spinning e-particles in both Extended EM and C-Spin-EM fields. 

Where the 𝐩! is a conjugate momentum corresponding to the “generalized velocity” 𝐒𝐜, 

 𝐩! =
!ℒ!"!#$
!𝐒𝐜

.                (4.51) 

Next we will study the effects of the following terms of Eq. (4.50),  

 𝐩!!!𝐀!!!𝐀𝐬 !

!!
≈ 𝐩 !

!!
− !!𝐩∙𝐀

!
− !!𝐩∙𝐀𝐬

!
,         (4.52) 

 𝐩!!!!𝐀!!!!! !

!!ℒ
≈ 𝐩! !

!!ℒ
− !!𝐩!∙𝐀!

!ℒ
− !!𝐩!∙!

!ℒ
.         (4.53) 

where non-linear terms have been ignored. 

In the following applications, both uniform magnetic field B and uniform spin-magnetic field 

𝐁! are in z-direction, vector potential A and spin-vector-potential 𝐀! have similar form, 

	 𝐀 = !
!
𝐁×𝐫,	 	 	 	 	 	 	 	 	 	 	     (4.54) 

	 𝐀! = −𝐁!×𝐫 = −(𝐒𝐜×𝐄)×𝐫.	 	 	 	 	 	 	 	 	 	 	 (4.55) 

Eq. (4.55) shows the relation between spin-vector potential and spin-magnetic field induced by 

spin, which has the same form as that induced by magnetic momentum [4].  

Remark: With Hamiltonian of Eq. (4.50), C-spin-EM can be converted to its quantum version. 

The Hamiltonian not only provides classical counterparts/origins of several quantum phenomena, 

but also predicts several classical effects that may be converted to quantum effects. 

 

4.4. Effects of Hamiltonian 

4.4.1. Extended-Rashba-SOC-1, Spin-Zeeman Effect and Experiment 

Rashba SOC is a fundamental effect. Let’s extend Rashba SOC. Substituting Eq. (4.55) into 
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the third term of Eq. (4.52), we obtain, 

 − !!𝐩∙𝐀𝐬
!

= !!
!
𝐩 ∙ 𝐁!×𝐫 = !!

!
𝐁! ∙ 𝐋.          (4.56) 

With the definitions of spin-magnetic field, 𝐁! = 𝐒𝐜×𝐄, let’s re-write Eq. (4.56), denote as 

H!"#!!,  

H!"#!! =
!!
!
𝐁! ∙ 𝐋 =

!!
!
𝐄 ∙ 𝐋×𝐒𝐜 .          (4.57) 

We refer Eq. (4.57) as Extended-Rashba-SOC-1. Comparing with H!"#$%" = α!𝐄 ∙ 𝛔×𝐩 .  

Remark: (1) The p represents a linear motion; 𝐋 = 𝐫×𝐩 represents an orbiting motion; thus the 

term, 𝐋×𝐒!, represents indeed a Spin-Orbit-coupling. Actually, when Rashba SOC is applied to 

several situations, the momentum p is replaced by angular momentum L [5]. (2)  

We will show that, in Eq. (4.115), the spin-magnetic force causes H!"#.  

 Zeeman Effect, 

 H!""#$% = −γ𝐋 ∙ 𝐁 

has important applications. The second term of Hamiltonian, Eq. (4.52), causes the regular 

Zeeman effect. The third term causes an additional shift, denoted as spin-Zeeman effect, 

H!"#$!! = − !!𝐩∙𝐀𝐬
!

= !!
!
𝐁! ∙ 𝐋,           (4.58) 

which represents the interaction between a 𝐁! field and orbiting motion.  

Testing Experiment 2: The spin-Zeeman effect is identical to Extended-Rashba-SOC-1, which 

provides a test that by measuring the spin-Zeeman shift one can test Extended-Rashba-SOC-1. 

 

4.4.2. Extended-Rashba-SOC-2 

Substituting Eq. (4.55) into the second term of Eq. (4.53), we obtain 

Extended-Rashba-SOC-2, denote as H!"#!!,  

    H!"#!! = − !!𝐩s∙𝐀s
aℒ

= !!
aℒ
𝐩s ∙ 𝐁s×𝐫 = !!

aℒ
𝐄 ∙ 𝐋s×𝐒𝐜 ,     (4.59) 

where 𝐋! is defined as 

𝐋! ≡ 𝐫×𝐩!,                (4.60) 

called “conjugate angular momentum” corresponding to conjugate momentum 𝐩!.  

 

4.4.3. Extended-Rashba-SOC-3 

An orbiting spinning particle has angular momentum L and conjugate angular momentum 

𝐋! that contains spin 𝐒!. To derive a total angular momentum in C-Spin-EM, combining Eq. 

(4.58) and Eq. (4.59), we define a total angular momentum 𝐉  and Hamiltonian for 

Extended-Rashba-SOC-3,  

 𝐉 ≡ !!
!
𝐋 + !!

aℒ
𝐋s.              (4.61) 

 H!"#!! ≡ −𝐁! ∙ 𝐉 = − 𝐒𝐜×𝐄 ∙ 𝐉 = 𝐄 ∙ 𝐒𝐜×𝐉 .        (4.62) 

We refer it as Extended-Rashba-SOC-3. 

 

4.4.4. Conjugate Angular Momentum-Magnetic Field Coupling 



	 22	

Combining Eq. (4.54) and the term, !!𝐩!∙!
!ℒ

, of Eq. (4.53), we obtain Hamiltonian for 

Conjugate Angular Momentum-Magnetic Field Coupling, denoted as H𝐋!!𝐁, 

    H𝐋!!𝐁 =
!!𝐩𝐬∙𝐀
𝐚𝓛

= !!𝐩!∙(𝐁×𝐫)
!!ℒ

= !!𝐁∙(𝐫×𝐩!)
!!ℒ

= !!
!!ℒ

𝐁 ∙ 𝐋!.      (4.63)  

 

4.4.5. Total angular Momentum-Magnetic Field Coupling 

 Combining H𝐋!!𝐁 with the second term of Eq. (4.52), !!𝐩∙𝐀
!

, and Eq. (4.61), we obtain the 

Total angular Momentum-Magnetic Field Coupling, 

 H!!!"!#$ =
!
!
𝐁 ∙ 𝐉.              (4.64) 

 

4.4.6. Spin-Aharonov–Bohm Effect and Experiment 

The regular Hamiltonian, Eq. (4.44), causes the phase shift of Aharonov–Bohm effect. Eq. 

(4.50) predicts an effect that a spin-vector-potential 𝐀! induces a phase shift, ∆φ!"#$,  

    ∆φ!"#$~
!!
ℏ

A! ∙ d𝐫,             (4.65) 

    A! ∙ d𝐫 = 𝐁𝐬 ∙ d𝐬 = 𝐒𝐜×𝐄 ∙ d𝐬 = 𝐒𝐜× −𝛁φ𝐞 −
!𝐀
!!

∙ d𝐬.   (4.66) 

which we denote as the Spin-Aharonov–Bohm effect, which is caused by the interaction between 

e-particles’ spin, gradient of electric scalar potential, 𝛁φ𝐞, and time changing of magnetic vector 

potential, !𝐀
!!

. 

When a spinning e-particle travelling along the same path P in a region with non-zero A, 

𝛁φ𝐞 and !𝐀
!!

, acquires a total phase shift, ∆φ!!"#$, which extends Aharonov–Bohm effect, 

∆φ!"!#$ = ∆φ!" + ∆φ!"#$ =
!!
ℏ

𝐀 ∙ d𝐫 + !!
ℏ

𝐀! ∙ d𝐫.      (4.67) 

Testing Experiment 3: In the Aharonov–Bohm double-slit experiment, change the vector 

potential A with time.  

Remark: Eq. (4.66) shows that the magnitude of a Spin-Aharonov–Bohm effect depends on the 

relative directions between 𝐒𝐜, 𝛁φ𝐞, and !𝐀
!!

.  

 

4.5. Spin-Lorentz-type Force  

Based on the type-2 duality between Extended EM and C-Spin-EM, we postulate that, beside 

the dualities between fields and field equations, there is a type-2 duality between Lorentz force 

and a force, denoted as spin-Lorentz-type force, i.e., under the transformation,  

𝐄 ↔ 𝐄𝐬, 𝐁 ↔ 𝐁𝐬 

Lorentz force,  𝐅𝐋!"#$%&  (abbreviate 𝐅𝐋 ), converts to Spin-Lorentz-type force,  𝐅𝐬!"#!!"#$%&' 

(abbreviate 𝐅!"), and vice versa, 

 𝐅!" = m !𝐯
!"
= Q!𝐄𝐬 + Q!𝐯×𝐁𝐬.           (4.68) 

The “v” is the velocity of a test e-particle. We refer “Q!𝐄𝐬” as spin-electric force, “Q!𝐯×𝐁𝐬” as 

spin-magnetic force. 

A moving spinning e-particle Q! experiences both Lorentz force and Spin-Lorentz-type 

forces, denoted as Total-Lorentz-type force, 𝐅!"#$%!!"#$%&' (abbreviated 𝐅!"), 

 𝐅!" = 𝐅𝐋 + 𝐅𝐬𝐋 = Q!𝐄 + Q!𝐯×𝐁 + Q!𝐄𝐬 + Q!𝐯×𝐁𝐬      (4.69) 
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Using definitions of 𝐄𝐬 and 𝐁𝐬 in terms of electric E and magnetic B fields, we obtain, 

𝐅!! = Q!𝐄 + Q!𝐯×𝐁 − Q! a𝐒𝐜×𝐁 + Q!𝐯× a𝐒𝐜×𝐄 .       (4.70) 

The “a” is a coefficient, such that Q! a𝐒𝐜 ×𝐁  and Q!𝐯× a𝐒𝐜 ×𝐄  have the unit of force. 

Here after, absorbing “a” into 𝐒𝐜. 

 

4.6. Extended Landau–Lifshitz and Landau–Lifshitz-Gilbert Equations 

Moreover, base on the type-2 duality, under the transformation,  

𝐯 ↔ 𝐒𝐜, 𝐄 ↔ 𝐄𝐬, 𝐁 ↔ 𝐁𝐬, 

Lorentz force equation converts to a Landau–Lifshitz-type equation, 

 m !𝐒𝐜
!"
= Q!𝐄𝐬 + Q!𝐒𝐜×𝐁𝐬 = −Q!𝐒𝐜×𝐁 + Q!𝐒𝐜×(𝐒𝐜×𝐄).     (4.71) 

Which predicts that not only magnetic field but also electric field induces spin precession, which 

is a counterpart of gyroscope precession in gravitational field. Combining Eq. (4.71) with LL and 

LLG equations respectively, we obtain Extended LL and Extended LLG equations, 

 !𝐌
!"
= −γ𝐌×𝐇!"" − λ𝐌×(𝐌×𝐇!"") + α𝐌×(𝐌×𝐃!""),      (4.72) 

 !𝐌
!"
= −γ𝐌×𝐇!"" + β𝐌×

!𝐌
!"
+ α𝐌×(𝐌×𝐃!"").       (4.73) 

Where the spin has been replaced by the magnetization M, and 𝐁 → 𝐇!"", 𝐄 → 𝐃!""; the “α” is 

coefficient.  

 

4.7. Effects of Spin-Lorentz-type Force 

4.7.1. Dual-Hall Effect/Topological Insulator and Experiment 

 The term, “Q!𝐒𝐜×𝐁”, of Eq. (4.70) causes a new effect that a magnetic field B in z-direction 

acting on the spin of e-particles, even the centers of the spinning e-particles are originally at rest, 

drives e-particles to move, which causes e-particles accumulation at the opposite surrounding 

edges, which in turn causes transverse electric fields, E! and E!. Assuming the magnetic field B 

is in z-direction, at equilibrium, v! = v! = 0, we have, 

 E! = S!"±B!,               (4.74) 

 E! = −S!"±B!.               (4.75)	  

Comparing with Hall transverse electric field, E! = v!B!, we refer this effect as the Dual-Hall 

Effect, i.e., the regular transverse Hall electric field converts to the transverse Dual-Hall electric 

field, and vice versa. To detect the Dual-Hall Effect is to test the spin-Lorentz-type force.  

Testing Experiment 4：Place a sheet of material in a magnetic field in z-direction, measuring 

transverse electric fields without applying an external electric field. 

Remark: The fundamental differences are: (1) In Hall effect, the motion of e-particles is required, 

while not required for Dual-Hall effect; (2) In Hall effect, the transverse electric field points to 

one direction, say either +y or −y, while in Dual-Hall effect, transverse electric fields are in 

two directions, ±x and ±y, depend on the orientations of spin, which causes topological 

insulator. 

  

4.7.2. Extended-Hall Effect/Topological Insulator 
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Eq. (4.70) shows that the spin-magnetic force, Q! 𝐯×(𝐒𝐜×𝐄) , deflects the trajectory of 

moving spinning e-particles, which causes the buildup of e-particles on opposite surrounding 

edge-surfaces. The buildup induces transverse electric fields that balance the spin-magnetic forces, 

Q!𝐄 = −Q! 𝐯×(𝐒𝐜×𝐄) .           

For classical spin there is no restriction on orientation of spin. Eq. (4.70) indicates that the 

electric field has not effect on spins that are in the same direction; thus, one can say that there is 

no spin in the applied electric field/current direction, or one only needs to consider the spins with 

orientations perpendicular to the direction of applied electric field. However, in our case, there is 

longitudinal electric field in x-direction, and transverse electric fields in both y- and z-directions, 

thus we need to consider spins in all x-, y-, and z-directions. We still use the term “spin” to 

represent the intrinsic angular momentum including those in the same direction of movement of 

e-particles. When convert to quantum, the concepts of Chirality and Helicity appear.  

The spin-Lorentz-type force is the spin’s orientation-dependent. Let’s consider random equal 

distribution of spin. For simplicity, denote spins with orientations along positive/negative x-axis, 

y-axis, and z-axis, as, respectively, S!"±, S!"± and S!"±. The positive/negative sings “±” refer 

to spin-up/spin-down, S!"!/S!"!, S!"!/S!"!, S!"!/S!"!, in that direction, respectively. 

In regular Hall experiment, both an external magnetic field B and an external electric field E 

are applied simultaneously. Now we study a 3D material placed in both a B field (z-axis) and an 

E field (x-axis) that drives a longitudinal current density j! flowing along x-axis (Fig. 2). Spin 

𝐒𝐜 can be either in ±x direction, or ±y direction, or ±z direction, denoted as 3-current model. 

     E!,  j!    B 

 

 L   

D                                          z        y 

   

            x 

Fig. 2 

Starting with the Total-Lorentz-type force, 𝐅!". An e-current in one direction contains 

e-particles with spins in different orientations. We obtain equations of motion, respectively, 

 !!!
!!!

= E! − S!"±B!, 

 
!!!
!!!

= E! − v!B! + S!"±B! − v!S!"±E! + v!S!"±E!, 

 !!!
!!!

= E! − v!S!"±E! + v!S!"±E!. 

And obtain, in equilibrium, v! = v! = 0, 

 v! =
!!!
!

E! − S!"±B! ,            (4.76) 

 E! =
!!!
!!!

+ S!"±B!,             (4.77) 

 E! =
!!!!!!!"±!!!!!!!"±!!

(!!!!!!"±)
,            (4.78) 
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 E! = − !! !!"±!!
(!!!!!!"±)

.              (4.79) 

The induced transverse electric fields depend on orientations of spins. The spinning e-particles 

are driven to surrounding edge/surfaces at ±y and ±z symmetrically. The accumulations make 

edge/surfaces having better conductivity than bulk. 

We use the same definitions of Hall coefficients R!!!" and resistivity ρ!!!", and obtain 

    R!"#!!! ≡
!!
!!!!

= 𝑚
!!Q𝑒

2!!
+

!Scy±
!!Q𝑒

2(Ex−Scy±Bz)
,        (4.80) 

 ρ!"#!!! ≡ R!"#!!!B! =
𝑚

!!Q𝑒
2 +

!Scy±!!
!!Q𝑒

2(Ex−Scy±Bz)
,        (4.81) 

 R!"#!!" ≡
!!
!!!!

= !
!!!(!!!!!!"±)

1 − !!"±
!!

− S!"±
!!
!!

,      (4.82) 

 ρ!"#!!" ≡ R!"#!!"B! =
!!

!!!(!!!!!!"±)
1 − !!"±

!!
− S!"±

!!
!!

,     (4.83) 

 R!"#!!" ≡
!!
!!!!

= − !!"±
!!!(!!!!!!"±)

!!
!!

,           (4.84) 

ρ!"#!!" ≡ R!"#!!"B! = − !!"± !!
!!!(!!!!!!"±)

.         (4.85) 

We refer the effect described by Eq. (4.76) to Eq. (4.85) as Extended-Hall effect/Topological 

insulator, which is caused by Total-Lorentz-type force.  

Remark: The term, “𝐯× 𝐒!×𝐄 ”, is the classical origin of that no magnetic field required in 

Spin-Hall effect of quantum, but an electric field, either an external or a local, is required.  

 

4.7.3. Extended-Hall effect having Zero Longitudinal Hall Coefficient/Resistivity 

For strong magnetic field, E! ≪ S!"±B!, Eq. (4.80) to Eq. (4.83) reduce to, 

 R!"#!!! =
!

!!!!!!!
− !

!!!!!!! !!
!!

!!"±!!

≈ 0,         (4.86)  

 ρ!"#!!! =
!

!!!!!
− !

!!!!! !!
!!

!!"±!!

≈ 0,          (4.87) 

 R!"#!!" ≈
!

!!!(!!!!!!"±)
1 + !

!!!!!

!!"±
!!"±

− S!"±
!!
!!

,      (4.88) 

 ρ!"#!!" ≈
!!

!!!(!!!!!!"±)
+ !

!!!!!(!!!!!!"±)
!!"±
!!"±

− !!!!"±
!!!(!!!!!!"±)

.     (4.89) 

For 1 ≫ v!S!"±, we obtain 

 R!"#!!" ≈
!

!!!
+ !

!"!!!!!

!!"±
!!"±

− !!"±
!!!

!!
!!

,        (4.90) 

 ρ!"#!!" ≈
!!
!!!

+ !
!"!!!

!!"±
!!"±

− !!!!"±
!!!

.          (4.91) 

 R!"#!!" ≈ − !!"±
!!!

!!
!!

,            (4.92) 
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 ρ!"#!!" ≈ − !!!!"±
!!!

.             (4.93) 

Remarks: (1) Eq. (4.76), Eq. (4.86) and Eq. (4.87) show that when spin-electric field, 

𝐄! = 𝐒c×𝐁, i.e., strong magnetic field, dominants the longitudinal current, there are zero 

longitudinal, R!"#!!! = 0 and ρ!"#!!! = 0, which is a classical counterpart of Hall conductance 

quantization in edge state, R!!!! = 0 and ρ!!!! = 0. (2) For strong longitudinal electric field, 

we have ρ!"#!!! ≠ 0.  

 

4.7.4. Extended-Hall effect Contributing to GMR/TMR Effect and Experiment 

 Starting with Extended Hall Resistivity for the 3D model in Fig. 2, 

	ρ!"#!!! =
𝑚

!!Q𝑒
2 +

!Scy±!!
!!Q𝑒

2(Ex−Scy±Bz)
.	 	 	 	 	      (4.81) 

The relative resistance change is calculated as， 

 𝛿ρ!"#!!! =
!!"#!!! 𝐁 !!!"#!!!(!)

!!"#!!!(!)
=

!
!!!!!

!
!!!"±!!

!!!!!(!!!!!"±!!)
! !
!!!!!

!
!!!!!

= !!"±!!
!!!!!"±!!

.  (4.94) 

Starting from zero magnetic field and increases it, 𝛿ρ!"#!!! increases. There is a turning point, 

 E! = S!"±B!.               (4.95) 

After the turning point, the B field continuously increases, we have E! < S!"±B!, thus 

ρ!"#!!! 𝐁 < ρ!"#!!!(0),            (4.96) 

which implies that an external magnetic field B, starting at certain strength, decreases the 

magnetoresistance. 

When a situation  

E! ≪ S!"±B! ,              (4.97) 

is reached, Eq. (4.94) gives 

 𝛿ρ!"#!!! ≈ −1,              (4.98) 

which implies a Giant/TMR magnetoresistance,  

ρ!"#!!! 𝐁 ≈ 0,              (4.99) 

which agrees with zero longitudinal Hall resistance of Eq. (4.87) and of the quantum Hall effect. 

Note, there is always resistance from the insulator layer in GMR/TMR, the net 

magnetoresistance is equal to that of insulator and, thus is a non-zero constant.  

Testing Experiment 5: Reducing insulator layer’s resistance to test whether ρ!"#!!! 𝐁 → 0. 

Remark: This derivation of GMR/TMR contributes a mechanism in addition to spin scattering.  

 

4.7.5. Extended-Hall Effect Contributing to Spin Hall Effect  

With absence of a magnetic field, there are still transverse dual electric fields, E! and E!, 

 E! = − !!!!"±!!
!!!!!!"±

= − !!!!!"±
! !!!!!!"±

E!!,         (4.100) 
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 E! = − !!!!"±!!
!!!!!!"±

= − !!!!!"±
! !!!!!!"±

E!!.         (4.101) 

Remark: the spin-magnetic force, Q! 𝐯×(𝐒𝐜×𝐄) , contributes to spin Hall effect. In the absence 

of magnetic field: (1) transverse E! and E! are dual/symmetry; an external magnetic field B 

breaks the duality/symmetry; (2) transverse E! and E! fields are proportional to the square of 

longitudinal electric field, which agrees with experiments.  

 

4.7.6. Extended-Hall effect Contributing to Anomalous-Hall Effect 

 Let’s compare with the empirical equation of Anomalous Hall effect, 

ρ!"#$!!" = R!!!"!!B! + R!M(T,B).  

Substituting Eq. (4.77) into Eq. (4.91), we obtain, 

    ρ!"#!!" ≈
!!
!!!

+ !
!"!!!

!!"±
!!"±

− !
!"!!!

!!!!"±
!!!

−
!!"±
!

!!!
Bz.     (4.102) 

The third term shows that Extended-Hall resistivity is dependent on the product of current and 

spin/magnetization, thus, contributes to R!M(T,B). 

Remark: The third term, !
!"!!!

!!!!"±
!!!

= ρ!"##!!!
!!!!"±
!!!

, of Eq. (4.102) contributes to both 

spin Hall effect and Anomalous Hall effect. We show that, from the perspective of C-Spin-EM, 

GMR/TMR and family of Hall effects belong to the same category, i.e., they are, at least partially, 

caused by Spin-Lorentz-type force. C-Spin-EM indeed provides universal classical models for 

several fundamental quantum phenomena. 

 

4.7.7. Temperature Dependence of Extended-Hall Effect 

For describing the temperature-dependent behaviors of Extended-Hall effect, we utilize, for 

simplicity, a model of thermal velocity,  

    v! =
!!"
!

,               (4.103) 

and obtain temperature-dependent Extended-Hall coefficient/resistivity, 

R!"#!!! =
!

!!!!!!!
+ !

!!!

!
!"#

S!"±,          (4.104) 

 ρ!"#!!! =
!

!!!!!
+ !

!!!

!!
!"#

S!"±,          (4.90) 

R!"#!!" =
!

!!! !! !!!
! !!"±

1 − !!"± !
!!"

− S!"±
!!
!!

,       (4.105) 

 ρ!"#!!" =
!

!!! !! !!"
! !!"±

B! − 𝑚S!"±
!!
!!"

− S!"±E! ,      (4.106) 

   R!"#!!" = − !!"±

!!! !! !!"
! !!"±

!!
!!

,           (4.107) 

 ρ!"#!!" = − !!"± !!

!!! !! !!"
! !!"±

.           (4.108) 
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The second term of Eq. (4.107), 𝑚S!"±
!!
!!"

, shows that the Dual-Hall effect depends on the 

B field and temperature; The third term of Eq. (4.107), S!"±E!, shows temperature-independent.  

 

4.7.8. Magnetic Aharonov-Casher-type Effect   

Taking the cross and dot products of Spin-Lorentz-type force and spin of a test e-particle, 

respectively, we obtain 

   𝐒𝐜×𝐅𝐒𝐋 = Qe𝐒𝐜×𝐄𝐬 + Qe𝐒𝐜×(𝐯×𝐁𝐬),         (4.110)  

 𝐒𝐜 ∙ 𝐅𝐒𝐋 = Q!𝐒𝐜 ∙ 𝐯×𝐁𝐬 = !!
!
𝐒𝐜×𝐄 ∙ 𝐒𝐜×𝐩 .       (4.111) 

When converting to quantum, the first term of Eq. (4.110) implies that spin-electric field 𝐄𝐬 

shifts the phase of a spinning e-particle.  

Remark: (1) Denoted Eq. (4.110) as the Aharonov-Casher-type effect. (2) Eq. (4.111) is an 

Extended Spin-Orbit-Electric field Coupling. 

 

4.7.9. More Effect   

More effects of Spin-Lorentz-type force are 

   𝐯×𝐅𝐒𝐋 = Q!𝐯×𝐄𝐬 + Q!𝐯×(𝐯×𝐁𝐬),          (4.112)  

 𝐯 ∙ 𝐅𝐒𝐋 = −Q!𝐯 ∙ 𝐒𝐜×𝐁 .            (4.113) 

 𝐫×𝐅𝐒𝐋 = Q!𝐫×𝐄𝐬 + Q!𝐫×(𝐯×𝐁𝐬),          (4.114)  

 𝐫 ∙ 𝐅𝐒𝐋 = Q!𝐫 ∙ 𝐄𝐬 +
!!
!
𝐄 ∙ (𝐋×𝐒𝐜).          (4.115) 

Remark: The second term, !!
!
𝐄 ∙ (𝐋×𝐒𝐜), of Eq. (4.115) is Extended-Rashba SOC-1 of Eq. 

(4.57), which is derived from Hamiltonian. Namely the force, 𝐅𝐒𝐋, causes effect of Hamiltonian. 

 

4.8. Lagrangian-Lorentz-type Force 

 Starting with Lagrangian’s equation, !
!"
!ℒ!"!#$
!!

= !ℒ!"!#$
!!

, where ℒ!"!#$ is given by Eq. (4.48),	  

	 	 	 	 ℒ!"!#$ =
!
!
mv! + Q!𝐀 ∙ 𝐯 − Q!φ +

!
!
aℒ(𝐒𝐜)! + Q!𝐀𝐬 ∙ 𝐒𝐜 − Q!φ! + Q!𝐀𝐬 ∙ 𝐯 + Q!𝐀 ∙ 𝐒𝐜,	

we derive a force, denoted it as the Lagrangian-Lorentz-type Force 𝐅!!, 

 !
!!
𝐅!! = 𝐄 + 𝐯×𝐁 + 𝐯× 𝐒𝐜×𝐄 + 𝐒𝐜× 𝐒𝐜×𝐄 + 𝐒𝐜 ∙ ∇ 𝐀𝐬 + 𝐒𝐜 ∙ ∇ 𝐀.  (4.116) 

The term, 𝐄𝐬, and the term, 𝐒𝐜×𝐁, have canceled each other. 

 

4.9. Spin-Potential-Coupling-Induced Force and Experiment 

 The Lagrangian-Lorentz-type force predicts a new force, Spin-Potential-Coupling-Induced 

force, represented by 𝐒𝐜 ∙ ∇ 𝐀𝐬 and 𝐒𝐜 ∙ ∇ 𝐀, which predict a new effect: a magnetic vector 

potential 𝐀, even in an area where 𝐁 = 𝟎, drives the originally static spinning e-charges to flow 

in opposite directions; the same to the spin-magnetic vector potential 𝐀𝐬. 

Testing Experiment 6: testing the Spin-potential Coupling. Let’s consider a solenoid of p turns 

per unit length with the radius r, the current I flows in the direction of increasing 𝜙, 𝜌 is the 

distance from a point to the solenoid (Fig. 3). The magnetic vector potential is, 
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 A! =
!!"!!

!"
ϕ. 

 

                 solenoid 

 

 

     ring 

 

Fig. 3 

The spin-potential-coupling-induced force on spinning e-particles is along the ϕ direction, 

 𝐅!"#$!!"#$%&#'() =
!!!
!
= Q! 𝐒𝐜 ∙ ∇ 𝐀 = −Q!

!!"!!

!!!
S!!±ϕ.     (4.117) 

Taking a ring and placing the “infinity long” solenoid through the center and perpendicular 

to the plane of the ring (Fig. 3), the “S!!! e-particles” and “S!!! e-particles” in the ring will go 

around the solenoid in the opposite directions to form opposite spin currents, 

 𝐣!"#$!!"#$%&#'() = 𝑛Q!v! = − !!!!!
!

!!"!!

!!!
S!!±ϕ.       (4.118) 

For spinning e-particles, spin and e-charge are bonded together; spin current is 

accompanying with e-current. The S!!! e-particles and S!!! e-particles near the solenoid will 

flow fast than those farther from the solenoid. 

For an open ring, e-particles with opposite spins will accumulate at opposite ends (Fig. 4). At 

equilibrium, the voltage between two ends is 

 V = −Q!
!"!"!!

!
S!!±.             (4.119)            

 

                 solenoid 

  

 

     open ring 

 

          Fig. 4 

Remark: the detection of this voltage/accumulation would prove the existence of the 

spin-potential-coupling-induced force and, thus, the Lagrangian-Lorentz-type force. 

  

4.10. Effects of Lagrangian-Lorentz-type Force 

4.10.1. Spin-Potential-Coupling Force Contributing to Aharonov–Bohm Effect 

Let’s consider a beam of spinning e-particles shooting at a solenoid. Experiencing the 

spin-potential-coupling force, the beam splits into opposite direction, due to the orientations of 

spins described by Eq. (4.113), and go around the solenoid, which contributes to Aharonov–

Bohm Effect (Fig.5) [6].  



	 30	

    
Fig. 5 

Remark: Hamiltonian, Eq. (4.44), describes the A–B Effect. Now Lagrangian-Lorentz-type force 

contributes to the A-B effect, which implies that force is partial cause of this effect of 

Hamiltonian.  

   

4.10.2. Lagrangian-Hall-type Effect/Topological Insulator 

 In regular Hall experiment, an external magnetic field B and an external electric field E are 

applied simultaneously. Let’s study effects of the Lagrangian-Lorentz-type force. Considering a 

3D material with width L in y-direction and thickness D in z direction, placed in a B field (z-axis) 

and an E field (x-axis), the longitudinal current density j! along x-axis, same as Fig. 2.  

For simplicity, ignoring the potential-dependent force, and let S!"± ≡ a, S!"± ≡ b, 

S!"± ≡ c. At equilibrium, v! = v! = 0, the Lagrangian-Lorentz-type force gives the electric 

fields, 
!!!
!!!

= E!(1 − bb − cc), 

 E! =
!!!

!!!(!!!!!!!)
,              (4.120) 

E! =
!!!!!!!!!!

(!!!!!!!!!!!)
,             (4.121) 

E! = − !vxEx
!!avx!!!!!!

.             (4.122) 

The Extended Hall parameters are, 

(1) Extended Hall coefficients:  

R!!!!!! ≡
𝐄!
!!!!

= !
!!!!!!!(1−bb−cc)

,           (4.123) 

 R!!!!!" ≡
𝐄!
!!!!

= !!!bEx
!!!!!(!!avx!!!!!!)

,           (4.124) 

  R!!!!!" ≡
𝐄!
!!!!

= − !!!
!!!!! !!avx!!!!!!

.          (4.125) 

(2) Extended Hall conductivity,  

σ!"!!! ≡
!!
𝐄!
= !!!!!

!
− !!!!!

!
S!"±! − !!!!!

!
S!"±! ,        (4.126) 

σ!!!!!" ≡
!!
𝐄!
= !!!

!!!bEx
− !!!vx

!!!bEx
S!"± −

!!!
!!!bEx

S!"±! − !!!
!!!bEx

S!"±! ,   (4.127) 

σ!!!!!" ≡
!!
𝐄!
= − !!!

!!!
+ !!!vx

!!!
S!"± +

!!!
!!!

S!"±! + !!!
!!!

S!"±! .      (4.128) 

(3) Extended Hall Resistivity, 

ρ!"#!!! ≡ R!"#!!!B! =
!

!!!!!(!!!!!!!)
,          (4.129) 

ρ!"#!!" ≡ R!"#!!"B! =
!!

!!! !!avx!!!!!!
− bEx

!!!(!!avx!!!!!!)
,     (4.130) 
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ρ!"#!!" ≡ R!"#!!"B! = − !!!
!!! !!avx!!!!!!

.        (4.131) 

We refer the effects described by Eq. (4.120) to Eq. (4.131) as the “Lagrangian-Hall-type Effect”.  

The Lagrangian-Lorentz-type Force induces Lagrangian-Hall-type effect, as Lorentz force 

induces Hall effect. 

 

4.10.3. Spin-Larmor-type Precession 

Lagrangian-Lorentz-type force 𝐅𝐋𝐋 = Q!𝐒𝐜× 𝐒𝐜×𝐄  induces Spin-Larmor-type precession, 

 !𝐒𝐜
!"
= 𝛀×𝐒𝐜,               (4.132) 

 𝛀 ≡ Q! 𝐒𝐜×𝐄 .              (4.133) 

Which is the same as the second term of Eq. (4.71). 

 

4.10.4. Underlying Mechanism of Rashba Effect  

The work done by Spin-magnetic field 𝐁𝐬 is,  

 𝐫 ∙ 𝐅𝐋𝐋 = Q!𝐫 ∙ 𝐯×𝐁𝐬 + Q!𝐫 ∙ 𝐒𝐜×𝐁𝐬 = !!
!
𝐄 ∙ 𝐋×𝐒𝐜 + !!

!
𝐄 ∙ 𝓵!×𝐒𝐜 .  (4.134) 

where 𝓵! ≡ 𝑚𝐫×𝐒𝐜. The first term of Eq. (4.134) is the Extended Rashba SOC-1 of Eq. (4.57). 

 The underlying mechanism of the Rashba effect is the spin-magnetic force. 

 

4.10.5. Spin-magnetic-Rashba-type SOC 

The Power of Lagrangian-Lorentz-type force acting on spin is,  

𝐯 ∙ 𝐅𝐋𝐋 = Q!𝐯 ∙ 𝐒𝐜×𝐁𝐬 = !!
!
𝐁𝐬 ∙ (𝐩×𝐒𝐜).		 	       (4.135) 

We refer the term !!
!!

 𝐁𝐬 ∙ 𝐒𝐜×𝐩  as the Spin-magnetic-Rashbe-type SOC.  

  

4.11. Effects of Lorentz Force on Spin  

4.11.1. Classical Origin of Aharonov–Casher effect 

We suggest that Lorentz force acts on spin as, 

 𝐒𝐜×𝐅𝐋 = Q!𝐒𝐜×𝐄 +
!!
!!
𝐒𝐜× 𝐩×𝐁 .          (4.136) 

The first term provides a classical origin of the Aharonov–Casher effect.  

Substituting the identity, 𝐀× 𝐁×𝐂 = 𝐀 ∙ 𝐂 𝐁 − 𝐀 ∙ 𝐁 𝐂, into Eq. (4.136), we obtain 

 𝐒𝐜×𝐅𝐋 = Q!𝐒𝐜×𝐄 +
!!
!!

𝐒𝐜 ∙ 𝐁 𝐩 − !!
!!

𝐒𝐜 ∙ 𝐩 𝐁.       (4.137) 

Substituting the identity, 𝐀× 𝐁×𝐂 = 𝐀×𝐁 ×𝐂 + 𝐁×(𝐀×𝐂), into Eq. (4.136), we obtain, 

𝐒𝐜×𝐅𝐋 = Q!𝐒𝐜×𝐄 +
!!
!!

𝐒𝐜×𝐩 ×𝐁 + !!
!!
𝐩×(𝐒𝐜×𝐁).       (4.138) 

Substituting the definition of the 𝐄! field into Eq. (4.138), we obtain, 

𝐒𝐜×𝐅𝐋 = Q!𝐒𝐜×𝐄 +
!!
!!

𝐒𝐜×𝐩 ×𝐁 − !!
!!
𝐩×𝐄!.        (4.139) 

 

4.11.2. Spin-Stark Effect; Magnetic-Rashba-type SOC  

We can find how Lorentz force affects spin differently, 

 𝐒𝐜 ∙ 𝐅𝐋 = Q!𝐒𝐜 ∙ 𝐄 +
!!
!!
𝐒𝐜 ∙ 𝐩×𝐁 = Q!𝐒𝐜 ∙ 𝐄 +

!!
!!
𝐁 ∙ 𝐒𝐜×𝐩 .    (4.140) 
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The Q!𝐒𝐜 ∙ 𝐄 causes spin-Stark effect. The !!
!!
𝐁 ∙ 𝐒𝐜×𝐩  is a magnetic-Rashba-type SOC. 

 

5. Summary and Discussion 

Euclidean geometry is the first self-consistent mathematical systems established based on 

few axioms, and deriving other theorems from axioms.	 	

Based on mathematical vector identities, we establish self-consistent UMFE that universally 

describes classical physical fields induced respectively by velocity and classical spin of a source.  

Combining UMFE and Coulomb’s law, we derived Extended EM, which: (1) justifies 

UMFE; (2) shows that the experiments-based EM have their mathematical origin; and (3) the 

uniform motion of an e-particle inevitably induce an axial vector magnetic field, which is 

predetermined mathematically. Moreover Extended EM predicts new effects that the spatially 

varying velocity of e-particle induces axial magnetic field and axial induced electric field.  

Combining UMFE and Coulomb’s law, we derived C-Spin-EM in the perspective of 

fundamental physics.  

C-Spin-EM is powerful and fruitful, and achieves the following: 

(1) Derives spin wave. 

(2) Derives Spin-Lorentz-type force and Lagrangian-Lorentz-type force, which, for 3D model, 

cause Dual-Hall Effect, Extended-Hall effect, Lagrangian-Hall-type Effect, and Temperature 

Dependence of Extended-Hall effect; also cause Extended Rashba SOC-1, -2, -3. 

(3) Extended-Hall effect contributes universally to zero longitudinal Hall coefficient/resistivity, 

GMR/TMR, Anomalous Hall effect, Spin Hall effect, and topological insulator. 

(4) Predicts Spin-Potential-Coupling-Induces force that contributes to Aharonov–Bohm Effect. 

(5) Provides classical counterparts of Aharonov-Bohm effect; Aharonov-Casher effect; Stark 

effect; Larmor Precession; Zeeman effect. 

(6) Proposes several experiments to test proposed effects, such as, definition of spin-electric and 

spin-magnetic fields, Spin-Aharonov–Bohm effect, Dual-Hall Effect/Topological Insulator, 

whether ρ!"#!!! 𝐁 ≈ 0 of GMR/TMR, Spin-Potential-Coupling-Induced force, Zeeman 

effect/Extended-Rashba SOC. 

We argue that the self-consistency, powerfulness and fruitfulness are evidences supporting 

C-Spin-EM. 

The mathematical identities lead to the physical dualities. UMFE provides mathematical 

origins of physical dualities between Extended EM and C-Spin-EM. 

The Lagrangian-Lorentz-type force and the Hamiltonian, Eq. (4.50), are derived from the 

same Lagrangian. We suggest that there is a duality between the Lagrangian-Lorentz-type force 

and the Hamiltonian, i.e., an effect of Hamiltonian corresponds to an effect of 

Lagrangian-Lorentz-type force, and vice versa, which is heuristic for exploring new effects. 

The extent of validity of C-Spin-EM is its extent to correctly predict and agree with 

experimental results.  
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Appendix : Inver-square Law for Spin 

 Postulate a physically hypothetical Q!"#$!!"!"#"$% (abbreviated Q!!!), call “spin-charge”, 

which is a spin counterpart of e-particle, and satisfies an inverse-square law, 

 ∇ ∙ 𝐄𝐬 = Q!!!.               


