doi: 10.7392/openaccess.45011832
University J. M. Vargas, Caracas, Venezuela
We attempt to show an existential proof of the fact that there are infinitely many twin prime numbers; by using Euclid’s theorem, Schröder-Bernstein’s theorem, another known results in Calculus and Number Theory.
Keywords: prime, twin primes Schröder-Bernstein’s theorem, Cantor’s theorem, Pomerance's theorem.
Citation: Meza, A. D. (2015). Cardinality of Primes p, p+2. Open Science Repository Mathematics, Online(open-access), e45011832. doi:10.7392/openaccess.45011832
Received: June 1, 2015
Published: June 19, 2015
Copyright: © 2015 Meza, A. D. Creative Commons Attribution 3.0 Unported License.
Contact: [email protected]
Other option: cloud.
APA
Meza, A. D. (2015). Cardinality of Primes p, p+2. Open Science Repository Mathematics, Online(open-access), e45011832. doi:10.7392/openaccess.45011832
MLA
Meza, Alberto Durán. “Cardinality of Primes P, p+2.” Open Science Repository Mathematics Online.open-access (2015): e45011832.
Chicago
Meza, Alberto Durán. “Cardinality of Primes P, p+2.” Open Science Repository Mathematics Online, no. open-access (June 19, 2015): 45011832. doi:10.7392/openaccess.45011832.
Harvard
Meza, A.D., 2015. Cardinality of Primes p, p+2. Open Science Repository Mathematics, Online(open-access), p.e45011832. Available at: http://www.open-science-repository.com/mathematics-45011832.html.
Science
1. A. D. Meza, Cardinality of Primes p, p+2, Open Sci. Repos. Math. Online, e45011832 (2015).
Nature
1. Meza, A. D. Cardinality of Primes p, p+2. Open Sci. Repos. Math. Online, e45011832 (2015).
Research registered in the DOI resolution system as: 10.7392/openaccess.45011832.